#!/usr/bin/env python3 import unittest import awkward1 as ak import numpy as np from pathlib import Path from km3net_testdata import data_path from km3io import OfflineReader from km3io.tools import (to_num, cached_property, unfold_indices, unique, uniquecount, fitinf, fitparams, count_nested, _find, mask, best_track, rec_types, get_w2list_param, get_multiplicity) OFFLINE_FILE = OfflineReader(data_path("offline/km3net_offline.root")) # class TestGetw2listParam(unittest.TestCase): # def test_get_w2list_param(self): # xsec_mean = get_w2list_param(OFFLINE_FILE.events, "gseagen", "W2LIST_GSEAGEN_XSEC_MEAN") # print(xsec_mean) class TestFitinf(unittest.TestCase): def setUp(self): self.tracks = OFFLINE_FILE.events.tracks self.fit = self.tracks.fitinf self.best = self.tracks[:, 0] self.best_fit = self.best.fitinf def test_fitinf(self): beta = fitinf('JGANDALF_BETA0_RAD', self.tracks) best_beta = fitinf('JGANDALF_BETA0_RAD', self.best) assert beta[0][0] == self.fit[0][0][0] assert beta[0][1] == self.fit[0][1][0] assert beta[0][2] == self.fit[0][2][0] assert best_beta[0] == self.best_fit[0][0] assert best_beta[1] == self.best_fit[1][0] assert best_beta[2] == self.best_fit[2][0] def test_fitparams(self): keys = set(fitparams()) assert "JGANDALF_BETA0_RAD" in keys class TestRecoTypes(unittest.TestCase): def test_reco_types(self): keys = set(rec_types()) assert "JPP_RECONSTRUCTION_TYPE" in keys class TestBestTrack(unittest.TestCase): def setUp(self): self.events = OFFLINE_FILE.events self.one_event = OFFLINE_FILE.events[0] def test_best_tracks(self): # test selection from multiple events events = self.events[self.events.n_tracks > 0] first_tracks = best_track(events.tracks, strategy="first") default_best = best_track(events.tracks, strategy="default", rec_type="JPP_RECONSTRUCTION_TYPE") assert first_tracks.dir_z[0] == events.tracks.dir_z[0][0] assert first_tracks.dir_x[1] == events.tracks.dir_x[1][0] assert default_best.lik[0] == ak.max(events.tracks.lik[0]) assert default_best.lik[1] == ak.max(events.tracks.lik[1]) assert default_best.rec_type[0] == 4000 # test selection from one event first_track = best_track(self.one_event.tracks, strategy="first") best = best_track(self.one_event.tracks, strategy="default", rec_type="JPP_RECONSTRUCTION_TYPE") assert first_track.dir_z == self.one_event.tracks.dir_z[0] assert first_track.lik == self.one_event.tracks.lik[0] assert best.lik == ak.max(self.one_event.tracks.lik) assert best.rec_type == 4000 # test raising ValueError with self.assertRaises(ValueError): best_track(events.tracks, strategy="Zineb") class TestGetMultiplicity(unittest.TestCase): def test_get_multiplicity(self): rec_stages_tracks = get_multiplicity(OFFLINE_FILE.events.tracks, [1, 3, 5, 4]) assert rec_stages_tracks.rec_stages[0] == [1, 3, 5, 4] assert rec_stages_tracks.rec_stages[1] == [1, 3, 5, 4] class TestCountNested(unittest.TestCase): def test_count_nested(self): fit = OFFLINE_FILE.events.tracks.fitinf assert count_nested(fit, axis=0) == 10 assert count_nested(fit, axis=1)[0:4] == ak.Array([56, 55, 56, 56]) assert count_nested(fit, axis=2)[0][0:4] == ak.Array([17, 11, 8, 8]) class TestRecStagesMasks(unittest.TestCase): def setUp(self): self.nested = ak.Array([[[1, 2, 3], [1, 2, 3], [1]], [[0], [1, 2, 3]], [[0], [0, 1, 3], [0], [1, 2, 3], [1, 2, 3]]]) def test_find(self): builder = ak.ArrayBuilder() _find(self.nested, ak.Array([1, 2, 3]), builder) labels = builder.snapshot() assert labels[0][0] == 1 assert labels[0][1] == 1 assert labels[0][2] == 0 assert labels[1][0] == 0 def test_mask(self): rec_stages = OFFLINE_FILE.events.tracks.rec_stages stages = [1, 3, 5, 4] masks = mask(rec_stages, stages) assert masks[0][0] == all(rec_stages[0][0] == ak.Array(stages)) assert masks[1][0] == all(rec_stages[1][0] == ak.Array(stages)) assert masks[0][1] == False class TestUnique(unittest.TestCase): def run_random_test_with_dtype(self, dtype): max_range = 100 for i in range(23): low = np.random.randint(0, max_range) high = np.random.randint(low + 1, low + 2 + np.random.randint(max_range)) n = np.random.randint(max_range) arr = np.random.randint(low, high, n).astype(dtype) np_reference = np.sort(np.unique(arr)) result = np.sort(unique(arr, dtype=dtype)) try: np.allclose(np_reference, result, atol=1e-1) except ValueError: print("low:", low) print("high:", high) print("n:", n) print("arr =", list(arr)) print("np.unique(arr) =", np_reference) print("unique(arr) =", result) assert False def test_unique_with_dtype_int8(self): self.run_random_test_with_dtype(np.int8) def test_unique_with_dtype_int16(self): self.run_random_test_with_dtype(np.int16) def test_unique_with_dtype_int32(self): self.run_random_test_with_dtype(np.int32) def test_unique_with_dtype_int64(self): self.run_random_test_with_dtype(np.int64) def test_unique_with_dtype_uint8(self): self.run_random_test_with_dtype(np.uint8) def test_unique_with_dtype_uint16(self): self.run_random_test_with_dtype(np.uint16) def test_unique_with_dtype_uint32(self): self.run_random_test_with_dtype(np.uint32) def test_unique_with_dtype_uint64(self): self.run_random_test_with_dtype(np.uint64) class TestUniqueCount(unittest.TestCase): def test_uniquecount(self): arr = ak.Array([[1, 2, 3], [2, 2, 2], [3, 4, 5, 6, 6], [4, 4, 3, 1]]) assert np.allclose([3, 1, 4, 3], uniquecount(arr)) def test_uniquecount_with_empty_subarrays(self): arr = ak.Array([[1, 2, 3], [2, 2, 2], [], [4, 4, 3, 1]]) assert np.allclose([3, 1, 0, 3], uniquecount(arr)) class TestToNum(unittest.TestCase): def test_to_num(self): self.assertEqual(10, to_num("10")) self.assertEqual(10.5, to_num("10.5")) self.assertEqual("test", to_num("test")) self.assertIsNone(to_num(None)) class TestCachedProperty(unittest.TestCase): def test_cached_property(self): class Test: @cached_property def prop(self): pass self.assertTrue(isinstance(Test.prop, cached_property)) class TestUnfoldIndices(unittest.TestCase): def test_unfold_indices(self): data = range(10) indices = [slice(2, 5), 0] assert data[indices[0]][indices[1]] == unfold_indices(data, indices) indices = [slice(1, 9, 2), slice(1, 4), 2] assert data[indices[0]][indices[1]][indices[2]] == unfold_indices( data, indices) def test_unfold_indices_raises_index_error(self): data = range(10) indices = [slice(2, 5), 99] with self.assertRaises(IndexError): unfold_indices(data, indices)