Skip to content
Snippets Groups Projects
Select Git revision
  • df2d175ff8daa8c1d9198f52df1677f61baf6c97
  • master default protected
  • test-python-3.8-3.9-3.10
  • sebastian_bachelorthesis
  • lukas_masterthesis
  • 34-need-for-new-extractor-including-w-boson-decay-mode
  • 31-change-in-particle-id-scheme-for-atm-muons
  • fix_h5shufflefor_index
  • fix_no_trigg
  • resolve-25
  • extrf
  • 25-neutrino-config-files
  • triggered_hits
  • shift_mc_tracks
  • 21-error-when-using-new-extractor
  • 20-update-get-standard-reco-function
  • 20-update-get-standard-reco-function-2
  • patch-vermarien
  • for_km3pipe_v9
  • stuff_michael
  • v2.0.5
  • v4.8.7 protected
  • v4.8.6 protected
  • v4.8.5 protected
  • v4.8.4 protected
  • v4.8.3 protected
  • v4.8.2 protected
  • v4.8.1 protected
  • v4.8 protected
  • v4.7.1 protected
  • v4.7 protected
  • v4.6 protected
  • v4.5 protected
  • v4.4.2 protected
  • v4.4.1 protected
  • v4.4 protected
  • v4.3.1 protected
  • v4.3 protected
  • v4.2 protected
  • v4.1.1 protected
  • v4.1 protected
41 results

Readme.md

  • user avatar
    ViaFerrata authored
    234a4a98
    History
    Readme.md 716 B

    Generating DL images based on KM3NeT data

    The documentation for OrcaSong can be found at http://ml.pages.km3net.de/OrcaSong!

    OrcaSong is a part of the Deep Learning efforts of the neutrino telescope KM3NeT.
    Find more information about KM3NeT on http://www.km3net.org.

    In this regard, OrcaSong is a project that produces KM3NeT event images based on the raw detector data. This means that OrcaSong takes a datafile with (neutrino-) events and based on this data, it produces 2D/3D/4D 'images' (histograms). Currently, only simulations with a hdf5 data format are supported as an input.

    These event 'images' are required for some Deep Learning machine learning algorithms, e.g. Convolutional Neural Networks.