""" Functions that extract info from a blob for the mc_info / y datafield in the h5 files. These are made for the specific given runs. They might not be applicable to other data, and could cause errors or produce unexpected results when used on data other then the specified. """ import warnings import numpy as np from km3pipe.io.hdf5 import HDF5Header from h5py import File __author__ = "Daniel Guderian" def get_std_reco(blob): """ Function to extract std reco info. The implemented strategy is the following: First, look for whether a rec stag has been reached and only then extract the reconstructed paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with exactly zero have to be filtered out! The 'best track' is the first (highest lik) while a certain rec stage has to be reached. This might have to be adjusted for other recos than JMuonGandalf chain. Members of the Tracks: dtype([('E', '<f8'), ('JCOPY_Z_M', '<f4'), ('JENERGY_CHI2', '<f4'), ('JENERGY_ENERGY', '<f4'), ('JENERGY_MUON_RANGE_METRES', '<f4'), ('JENERGY_NDF', '<f4'), ('JENERGY_NOISE_LIKELIHOOD', '<f4'), ('JENERGY_NUMBER_OF_HITS', '<f4'), ('JGANDALF_BETA0_RAD', '<f4'), ('JGANDALF_BETA1_RAD', '<f4'), ('JGANDALF_CHI2', '<f4'), ('JGANDALF_LAMBDA', '<f4'), ('JGANDALF_NUMBER_OF_HITS', '<f4'), ('JGANDALF_NUMBER_OF_ITERATIONS', '<f4'), ('JSHOWERFIT_ENERGY', '<f4'), ('JSTART_LENGTH_METRES', '<f4'), ('JSTART_NPE_MIP', '<f4'), ('JSTART_NPE_MIP_TOTAL', '<f4'), ('JVETO_NPE', '<f4'), ('JVETO_NUMBER_OF_HITS', '<f4'), ('dir_x', '<f8'), ('dir_y', '<f8'), ('dir_z', '<f8'), ('id', '<i4'), ('idx', '<i8'), ('length', '<f8'), ('likelihood', '<f8'), ('pos_x', '<f8'), ('pos_y', '<f8'), ('pos_z', '<f8'), ('rec_type', '<i4'), ('t', '<f8'), ('group_id', '<i8')]) members of rec stages: .idx (corresponding to the track id), .rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf, 4=engery, 5=start), .group_id (event id in file) Parameters ---------- blob : blob containing the reco info Returns ------- std_reco_info : dict Dict with the most common std reco params. Can be expanded. """ # use this later to identify not reconstructed events dummy_value = 0 # if there was no std reco at all, this will not exist # these are events that stopped at/before prefit try: rec_stages = blob["RecStages"] # get first track only rec_stages_best_track = rec_stages.rec_stage[rec_stages.idx == 0] # often enough: best track is the first best_track = blob["Tracks"][0] except KeyError: rec_stages_best_track = [] print( "An event didnt have any reco. Setting everything to" + str(dummy_value) + "." ) # take the direction only if JGanalf was executed if 3 in rec_stages_best_track: std_dir_x = best_track["dir_x"] std_dir_y = best_track["dir_y"] std_dir_z = best_track["dir_z"] std_beta0 = best_track["JGANDALF_BETA0_RAD"] std_lik = best_track["likelihood"] std_n_hits_gandalf = best_track["JGANDALF_NUMBER_OF_HITS"] else: std_dir_x = dummy_value std_dir_y = dummy_value std_dir_z = dummy_value std_beta0 = dummy_value std_lik = dummy_value std_n_hits_gandalf = dummy_value # energy fit from JEnergy if 4 in rec_stages_best_track: std_energy = best_track["E"] lik_energy = best_track["JENERGY_CHI2"] else: std_energy = dummy_value lik_energy = dummy_value # vertex and length from JStart if 5 in rec_stages_best_track: std_pos_x = best_track["pos_x"] std_pos_y = best_track["pos_y"] std_pos_z = best_track["pos_z"] std_length = best_track["JSTART_LENGTH_METRES"] else: std_pos_x = dummy_value std_pos_y = dummy_value std_pos_z = dummy_value std_length = dummy_value std_reco_info = { "std_dir_x": std_dir_x, "std_dir_y": std_dir_y, "std_dir_z": std_dir_z, "std_beta0": std_beta0, "std_lik": std_lik, "std_n_hits_gandalf": std_n_hits_gandalf, "std_pos_x": std_pos_x, "std_pos_y": std_pos_y, "std_pos_z": std_pos_z, "std_energy": std_energy, "std_lik_energy": lik_energy, "std_length": std_length, } return std_reco_info def get_real_data_info_extr(input_file): """ Wrapper function that includes the actual mc_info_extr for real data. There are no n_gen like in the neutrino case. Parameters ---------- input_file : km3net data file Can be online or offline format. Returns ------- mc_info_extr : function The actual mc_info_extr function that holds the extractions. """ # check if std reco is present f = File(input_file, "r") has_std_reco = "reco" in f.keys() def mc_info_extr(blob): """ Processes a blob and creates the y with mc_info and, if existing, std reco. For this real data case it is only general event info, like the id. Parameters ---------- blob : dict The blob from the pipeline. Returns ------- track : dict Containing all the specified info the y should have. """ event_info = blob["EventInfo"][0] # add n_hits info for the cut n_hits = len(blob["Hits"]) track = { "event_id": event_info.event_id, "run_id": event_info.run_id, "trigger_mask": event_info.trigger_mask, "n_hits": n_hits, } # get all the std reco info if has_std_reco: std_reco_info = get_std_reco(blob) track.update(std_reco_info) return track return mc_info_extr def get_random_noise_mc_info_extr(input_file): """ Wrapper function that includes the actual mc_info_extr for random noise simulations. There are no n_gen like in the neutrino case. Parameters ---------- input_file : km3net data file Can be online or offline format. Returns ------- mc_info_extr : function The actual mc_info_extr function that holds the extractions. """ # check if std reco is present f = File(input_file, "r") has_std_reco = "reco" in f.keys() def mc_info_extr(blob): """ Processes a blob and creates the y with mc_info and, if existing, std reco. For this random noise case it is only general event info, like the id. Parameters ---------- blob : dict The blob from the pipeline. Returns ------- track : dict Containing all the specified info the y should have. """ event_info = blob["EventInfo"] track = { "event_id": event_info.event_id[0], "run_id": event_info.run_id[0], "particle_type": 0, } # get all the std reco info if has_std_reco: std_reco_info = get_std_reco(blob) track.update(std_reco_info) return track return mc_info_extr def get_neutrino_mc_info_extr(input_file): """ Wrapper function that includes the actual mc_info_extr for neutrino simulations. The n_gen parameter, needed for neutrino weighting is extracted from the header of the file. Parameters ---------- input_file : km3net data file Can be online or offline format. Returns ------- mc_info_extr : function The actual mc_info_extr function that holds the extractions. """ # check if std reco is present f = File(input_file, "r") has_std_reco = "reco" in f.keys() # get the n_gen header = HDF5Header.from_hdf5(input_file) n_gen = header.genvol.numberOfEvents def mc_info_extr(blob): """ Processes a blob and creates the y with mc_info and, if existing, std reco. For this neutrino case it is the full mc info for the primary neutrino; there are the several "McTracks": check the simulation which index "p" the neutrino has. Parameters ---------- blob : dict The blob from the pipeline. Returns ------- track : dict Containing all the specified info the y should have. """ # get general info about the event event_id = blob["EventInfo"].event_id[0] run_id = blob["EventInfo"].run_id[0] # weights for neutrino analysis weight_w1 = blob["EventInfo"].weight_w1[0] weight_w2 = blob["EventInfo"].weight_w2[0] weight_w3 = blob["EventInfo"].weight_w3[0] # first, look for the particular neutrino index of the production p = 0 # for ORCA4 (and probably subsequent productions) mc_track = blob["McTracks"][p] # some track mc truth info particle_type = mc_track.type energy = mc_track.energy is_cc = mc_track.cc bjorkeny = mc_track.by dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z time_interaction = ( mc_track.time ) # actually always 0 for primary neutrino, measured in MC time vertex_pos_x, vertex_pos_y, vertex_pos_z = ( mc_track.pos_x, mc_track.pos_y, mc_track.pos_z, ) # add also the nhits info n_hits = len(blob["Hits"]) track = { "event_id": event_id, "particle_type": particle_type, "energy": energy, "is_cc": is_cc, "bjorkeny": bjorkeny, "dir_x": dir_x, "dir_y": dir_y, "dir_z": dir_z, "time_interaction": time_interaction, "run_id": run_id, "vertex_pos_x": vertex_pos_x, "vertex_pos_y": vertex_pos_y, "vertex_pos_z": vertex_pos_z, "n_hits": n_hits, "weight_w1": weight_w1, "weight_w2": weight_w2, "weight_w3": weight_w3, "n_gen": n_gen, } # get all the std reco info if has_std_reco: std_reco_info = get_std_reco(blob) track.update(std_reco_info) return track return mc_info_extr def get_muon_mc_info_extr(input_file): """ Wrapper function that includes the actual mc_info_extr for atm. muon simulations. There are no n_gen like in the neutrino case. Parameters ---------- input_file : km3net data file Can be online or offline format. Returns ------- mc_info_extr : function The actual mc_info_extr function that holds the extractions. """ # check if std reco is present f = File(input_file, "r") has_std_reco = "reco" in f.keys() # no n_gen here, but needed for concatenation n_gen = 1 def mc_info_extr(blob): """ Processes a blob and creates the y with mc_info and, if existing, std reco. For this atm. muon case it is the full mc info for the primary; there are the several "McTracks": check the simulation to understand what "p" you want. Muons come in bundles that have the same direction. For energy: sum of all muons in a bundle, for vertex: weighted (energy) mean of the individual vertices . Parameters ---------- blob : dict The blob from the pipeline. Returns ------- track : dict Containing all the specified info the y should have. """ event_id = blob["EventInfo"].event_id[0] run_id = blob["EventInfo"].run_id[0] p = 0 # for ORCA4 (and probably subsequent productions) mc_track = blob["McTracks"][p] particle_type = ( mc_track.type ) # assumed that this is the same for all muons in a bundle is_cc = mc_track.cc # always 0 actually bjorkeny = mc_track.by time_interaction = mc_track.time # same for all muons in a bundle # sum up the energy of all muons energy = np.sum(blob["McTracks"].energy) # all muons in a bundle are parallel, so just take dir of first muon dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z # vertex is the weighted (energy) mean of the individual vertices vertex_pos_x = np.average( blob["McTracks"][p:].pos_x, weights=blob["McTracks"][p:].energy ) vertex_pos_y = np.average( blob["McTracks"][p:].pos_y, weights=blob["McTracks"][p:].energy ) vertex_pos_z = np.average( blob["McTracks"][p:].pos_z, weights=blob["McTracks"][p:].energy ) # add also the nhits info n_hits = len(blob["Hits"]) # this is only relevant for neutrinos, though dummy info is needed for the concatenation weight_w1 = 10 weight_w2 = 10 weight_w3 = 10 track = { "event_id": event_id, "particle_type": particle_type, "energy": energy, "is_cc": is_cc, "bjorkeny": bjorkeny, "dir_x": dir_x, "dir_y": dir_y, "dir_z": dir_z, "time_interaction": time_interaction, "run_id": run_id, "vertex_pos_x": vertex_pos_x, "vertex_pos_y": vertex_pos_y, "vertex_pos_z": vertex_pos_z, "n_hits": n_hits, "weight_w1": weight_w1, "weight_w2": weight_w2, "weight_w3": weight_w3, "n_gen": n_gen, } # get all the std reco info if has_std_reco: std_reco_info = get_std_reco(blob) track.update(std_reco_info) return track return mc_info_extr