#!/usr/bin/env python # -*- coding: utf-8 -*- """Code that saves the histograms (generated by hits_to_histograms) and the mc event_info to a h5 file""" import h5py def store_histograms_as_hdf5(hists, mc_infos, filepath_output, compression=(None, None)): """ Takes numpy histograms ('images') for a certain projection as well as the mc_info ('tracks') and saves them to a h5 file. Parameters ---------- hists : ndarray(ndim=2) Array that contains all histograms for a certain projection. mc_infos : ndarray(ndim=2) 2D array containing important MC information for each event_id, [event_id, particle_type, energy, isCC, categorical event types]. filepath_output : str Complete filepath of the to be created h5 file. compression : tuple(None/str, None/int) Tuple that specifies if a compression filter should be used. Either ('gzip', 1-9) or ('lzf', None). """ f = h5py.File(filepath_output, 'w') chunks_hists = (32,) + hists.shape[1:] if compression[0] is not None else None chunks_mc_infos = (32,) + mc_infos.shape[1:] if compression[0] is not None else None fletcher32 = True if compression[0] is not None else False f.create_dataset('x', data=hists, dtype='uint8', fletcher32=fletcher32, chunks=chunks_hists, compression=compression[0], compression_opts=compression[1], shuffle=False) f.create_dataset('y', data=mc_infos, dtype='float32', fletcher32=fletcher32, chunks=chunks_mc_infos, compression=compression[0], compression_opts=compression[1], shuffle=False) f.close()