Skip to content
Snippets Groups Projects

Single energy runs

Merged Johannes Schumann requested to merge single_energy into master
1 file
+ 1
1
Compare changes
  • Side-by-side
  • Inline
+ 68
39
@@ -188,9 +188,18 @@ class GiBUUOutput:
]
self._read_xsection_file()
self._read_root_output()
self._read_flux_file()
self._read_jobcard()
self.flux_data = None
self._min_energy = np.nan
self._max_energy = np.nan
self._generated_events = -1
try:
self._read_flux_file()
except OSError:
self._read_single_energy()
def _read_root_output(self):
root_pert_regex = re.compile(ROOT_PERT_FILENAME)
self.root_pert_files = list(
@@ -219,46 +228,64 @@ class GiBUUOutput:
else:
self.jobcard = None
def _read_single_energy(self):
root_tupledata = self.arrays
energies = np.array(root_tupledata.lepIn_E)
if np.std(energies) > 1e-10:
raise NotImplementedError(
"Energy not constant; run data cannot be interpreted")
self._min_energy = np.mean(energies)
self._max_energy = self._max_energy
num_ensembles = int(self.jobcard["input"]["numensembles"])
num_runs = int(self.jobcard["input"]["num_runs_sameenergy"])
self._generated_events = num_ensembles * num_runs
def _read_flux_file(self):
fpath = join(self._data_path, FLUXDESCR_FILENAME)
self.flux_data = np.loadtxt(fpath, dtype=FLUX_INFORMATION_DTYPE)
self.flux_interpolation = UnivariateSpline(self.flux_data["energy"],
self.flux_data["events"])
self._energy_min = np.min(self.flux_data["energy"])
self._energy_max = np.max(self.flux_data["energy"])
self._generated_events = int(np.sum(self.flux_data["events"]))
def _event_xsec(self, root_tupledata):
weights = np.array(root_tupledata.weight)
total_events = np.sum(self.flux_data["events"])
total_events = self._generated_events
n_files = len(self.root_pert_files)
xsec = np.divide(total_events * weights, n_files)
return xsec
@property
def mean_xsec(self):
root_tupledata = self.arrays
energies = np.array(root_tupledata.lepIn_E)
weights = self._event_xsec(root_tupledata)
Emin = np.min(energies)
Emax = np.max(energies)
xsec, energy_bins = np.histogram(energies,
weights=weights,
bins=np.logspace(
np.log10(Emin), np.log10(Emax),
15))
deltaE = np.mean(self.flux_data["energy"][1:] -
self.flux_data["energy"][:-1])
bin_events = np.array([
self.flux_interpolation.integral(energy_bins[i],
energy_bins[i + 1]) / deltaE
for i in range(len(energy_bins) - 1)
])
x = (energy_bins[1:] + energy_bins[:-1]) / 2
y = xsec / bin_events / x
xsec_interp = interp1d(x,
y,
kind="linear",
fill_value=(y[0], y[-1]),
bounds_error=False)
return lambda e: xsec_interp(e) * e
if self.flux_data is None:
return lambda energy: self.xsection["sum"]
else:
root_tupledata = self.arrays
energies = np.array(root_tupledata.lepIn_E)
weights = self._event_xsec(root_tupledata)
Emin = np.min(energies)
Emax = np.max(energies)
xsec, energy_bins = np.histogram(energies,
weights=weights,
bins=np.logspace(
np.log10(Emin),
np.log10(Emax), 15))
deltaE = np.mean(self.flux_data["energy"][1:] -
self.flux_data["energy"][:-1])
bin_events = np.array([
self.flux_interpolation.integral(energy_bins[i],
energy_bins[i + 1]) / deltaE
for i in range(len(energy_bins) - 1)
])
x = (energy_bins[1:] + energy_bins[:-1]) / 2
y = xsec / bin_events / x
xsec_interp = interp1d(x,
y,
kind="linear",
fill_value=(y[0], y[-1]),
bounds_error=False)
return lambda e: xsec_interp(e) * e
def w2weights(self, volume, target_density, solid_angle):
"""
@@ -275,18 +302,19 @@ class GiBUUOutput:
"""
root_tupledata = self.arrays
energy_min = np.min(self.flux_data["energy"])
energy_max = np.max(self.flux_data["energy"])
energy_phase_space = self.flux_interpolation.integral(
energy_min, energy_max)
xsec = self._event_xsec(
root_tupledata
) * self.A #xsec_per_nucleon * no_nucleons in the core
inv_gen_flux = np.power(
self.flux_interpolation(root_tupledata.lepIn_E), -1)
phase_space = solid_angle * energy_phase_space
if self.flux_data is not None:
inv_gen_flux = np.power(
self.flux_interpolation(root_tupledata.lepIn_E), -1)
energy_phase_space = self.flux_interpolation.integral(
self._energy_min, self._energy_max)
energy_factor = energy_phase_space * inv_gen_flux
else:
energy_factor = 1
env_factor = volume * SECONDS_PER_YEAR
retval = env_factor * phase_space * inv_gen_flux * xsec * 10**-42 * target_density
retval = env_factor * solid_angle * energy_factor * xsec * 10**-42 * target_density
return retval
@staticmethod
@@ -387,15 +415,15 @@ class GiBUUOutput:
@property
def energy_min(self):
return np.min(self.flux_data["energy"])
return self._min_energy
@property
def energy_max(self):
return np.max(self.flux_data["energy"])
return self._max_energy
@property
def generated_events(self):
return int(np.sum(self.flux_data["events"]))
return self._generated_events
def write_detector_file(gibuu_output,
@@ -563,7 +591,8 @@ def write_detector_file(gibuu_output,
if tau_secondaries is not None:
event_tau_sec = tau_secondaries[mc_event_id]
add_particles(event_tau_sec, vtx_pos, R, mc_trk_id, timestamp)
add_particles(event_tau_sec, vtx_pos, R, mc_trk_id, timestamp,
PARTICLE_MC_STATUS["StableFinalState"])
mc_trk_id += len(event_tau_sec.E)
else:
lep_out_trk = ROOT.Trk()
Loading