#!/usr/bin/env python # coding=utf-8 # Filename: nuclei_xsections.py # Author: Johannes Schumann <jschumann@km3net.de> """ Generate Usage: nuclei_xsections.py DATAFILE [--Zmin=<Zmin>] [--Zmax=<Zmax>] [--threads=<n>] [--verbose] [--anticc] nuclei_xsections.py DATAFILE PLOTFILE nuclei_xsections.py (-h | --help) Options: -h --help Show this screen. OUTFILE Filename for the hdf5 output containing the plot data PLOTFILE Filename for the pdf output containing the plots --threads=<n> Number of worker threads which should be used to process data parallel [default: 1] --verbose Display GiBUU output """ import os import time import numpy as np import km3pipe as kp import matplotlib.pyplot as plt from tempfile import TemporaryDirectory from os.path import dirname, abspath from collections import defaultdict from concurrent.futures import ThreadPoolExecutor from km3buu.ctrl import run_jobcard from km3buu.jobcard import Jobcard from km3buu.jobcard import XSECTIONMODE_LOOKUP, PROCESS_LOOKUP, FLAVOR_LOOKUP from km3buu.output import GiBUUOutput def generate_neutrino_jobcard(process, flavor, energy, target): """ Generate a jobcard for neutrino interaction Parameters ---------- process: str Interaction channel ["CC", "NC", "antiCC", "antiNC"] flavour: str Flavour ["electron", "muon", "tau"] energy: float Initial energy of the neutrino in GeV target: (int, int) (Z, A) describing the target nukleon input_path: str The input path pointing to the GiBUU lookup data which should be used """ jc = Jobcard() # NEUTRINO jc.set_property("neutrino_induced", "process_ID", PROCESS_LOOKUP[process.lower()]) jc.set_property("neutrino_induced", "flavor_ID", FLAVOR_LOOKUP[flavor.lower()]) jc.set_property("neutrino_induced", "nuXsectionMode", XSECTIONMODE_LOOKUP["dSigmaMC"]) jc.set_property("neutrino_induced", "includeDIS", True) jc.set_property("neutrino_induced", "includeDELTA", True) jc.set_property("neutrino_induced", "includeRES", True) jc.set_property("neutrino_induced", "includeQE", True) jc.set_property("neutrino_induced", "include1pi", True) jc.set_property("neutrino_induced", "include2p2hQE", True) jc.set_property("neutrino_induced", "include2pi", False) jc.set_property("neutrino_induced", "include2p2hDelta", False) jc.set_property("neutrino_induced", "printAbsorptionXS", "T") jc.set_property("nl_SigmaMC", "enu", energy) # INPUT jc.set_property("input", "numTimeSteps", 0) jc.set_property("input", "eventtype", 5) jc.set_property("input", "numEnsembles", 100) jc.set_property("input", "delta_T", 0.2) jc.set_property("input", "localEnsemble", True) jc.set_property("input", "num_runs_SameEnergy", 1) jc.set_property("input", "LRF_equals_CALC_frame", True) # TARGET jc.set_property("target", "target_Z", target[0]) jc.set_property("target", "target_A", target[1]) # MISC # jc.set_property("nl_neutrinoxsection", "DISmassless", True) jc.set_property("neutrinoAnalysis", "outputEvents", True) jc.set_property("pythia", "PARP(91)", 0.44) return jc def worker(energy, Z, anti_flag=False): process = "cc" if anti_flag: process = "anticc" # create a neutrino jobcard for oxygen tmpjc = generate_neutrino_jobcard(process, "electron", energy, (Z, 2 * Z)) datadir = TemporaryDirectory(dir=dirname(__file__), prefix="%sGeV" % energy) run_jobcard(tmpjc, datadir.name) data = GiBUUOutput(datadir) return data def plot(datafile, plotfile): plt.xlabel("Energy [GeV]") plt.ylabel(r"$\nu$ Crosssection / E [$10^-38cm^{cm^2}/GeV$]") plt.legend() plt.xscale("log") plt.grid() plt.savefig(plotfile) pass class XSectionPump(kp.Module): def configure(self): self.tasks = self.require('tasks') self.energies = self.require('energies') self.Zrange = self.require('zrange') def process(self, blob): blob = kp.Blob() if len(self.tasks) == 0: raise StopIteration key = list(self.tasks.keys())[0] task = self.tasks.pop(key) res = task.result() dct = dict(res.xsection._xsections) dct.update({'energy': self.energies[key[0]], 'Z': self.Zrange[key[1]]}) blob['Xsection'] = kp.Table(dct, h5loc='xsec') return blob def main(): from docopt import docopt args = docopt(__doc__) datafile = args['DATAFILE'] if args['PLOTFILE']: plotfile = args['PLOTFILE'] plot(datafile, plotfile) return if args["--verbose"]: log = kp.logger.get_logger("ctrl.py") log.setLevel("INFO") workers = int(args["--threads"]) xsections = defaultdict(list) Zmin = 1 if args['--Zmin']: Zmin = int(args['--Zmin']) Zmax = 16 if args['--Zmax']: Zmax = int(args['--Zmax']) energies = np.logspace(-1, 1, 2) Zrange = range(Zmin, Zmax + 1) tasks = {} with ThreadPoolExecutor(max_workers=workers) as executor: for i, energy in enumerate(energies): for j, Z in enumerate(Zrange): tasks[i, j] = executor.submit(worker, energy, Z, args["--anticc"]) if args["--verbose"]: import click while True: time.sleep(1) status = {k: v.done() for k, v in tasks.items()} click.clear() for idx, st in status.items(): click.echo("Energy %.3f - Z %d: %s" % (energies[idx[0]], Zrange[idx[1]], st)) if all(status.values()): break pipe = kp.Pipeline() pipe.attach(XSectionPump, tasks=tasks, energies=energies, zrange=Zrange) pipe.attach(kp.io.HDF5Sink, filename=datafile) pipe.drain() # for i, res in tasks.items(): # data = res.result() # for k in ['sum', 'QE', 'highRES', 'DIS', 'Delta']: # xsections[k].append(data.xsection[k]) # for k in ['sum', 'QE', 'highRES', 'DIS', 'Delta']: # plt.plot(energies, np.divide(xsections[k], energies), label=k) if __name__ == '__main__': main()