From 861be23e583792b6d753cd80fe6c6cdf77165b28 Mon Sep 17 00:00:00 2001
From: ThijsLyon <tvaneeden@km3net.de>
Date: Thu, 27 Jan 2022 12:56:44 +0100
Subject: [PATCH] make plot for maarten

---
 .ipynb_checkpoints/pmt_gain-checkpoint.ipynb | 48 ++++++++++++++++++--
 pmt_gain.ipynb                               | 48 ++++++++++++++++++--
 2 files changed, 86 insertions(+), 10 deletions(-)

diff --git a/.ipynb_checkpoints/pmt_gain-checkpoint.ipynb b/.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
index c786539..1674cc1 100644
--- a/.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
+++ b/.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
@@ -196,7 +196,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 201,
+   "execution_count": 215,
    "id": "4eaed37c-3cae-44ef-88db-fac0ce64acbf",
    "metadata": {},
    "outputs": [
@@ -206,7 +206,7 @@
        "Text(0.5, 1.0, 'Location: Amsterdam')"
       ]
      },
-     "execution_count": 201,
+     "execution_count": 215,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -260,11 +260,49 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 273,
    "id": "ca1f27e5-fecb-42d5-8e17-dd58da923f08",
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')"
+      ]
+     },
+     "execution_count": 273,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkFElEQVR4nO3dfZwdZXn/8c/X8Gh4WBBcIQEWNVCBYCwrULV0LQiBVhG1EKSQCBqtUItNbdH6Eyql0iqioIJRELDIQ3mQCChEyhGfEALEJDxJgPAjaSQKJGEBqcGrf8x9yLDsnjl79pyZXfb7fr3mtTP33DNzzb3nnOvMPXNmFBGYmZk18oqqAzAzs9HPycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwGyMkhaTXD3OZWZJ+0qmYbPxwsrBCkpZJ+l9J2wwovyt9gPVUFFo9jo0kXZHiDEl9DepuLOk8SY9IekrSQkkHD6jzQUlLJfVL+oGk7XPzuiRdKGlVGk5p0z4MOxGMJpL2l3SfpGck3SxppyHqvVrSJZL+R9IaST+VtM8Qdc8f2C7pf5Ifnpd0dqf2y9ZzsrBmPQwcWZ+QNBV4ZXXhvMRPgL8Gfl1QbwPgUeDPgC2BTwOX1xNeSjT/BhwKbE2235fklj+TbL97gL2BoyV9oD27MDalLxFXAf+PrM0WAJcNUX0z4HZgr1T3QuA6SZsNWOfbgNcNXDgiNqsPwGuAZ4H/atOuWCMR4cFDwwFYRvahenuu7AvAPwMB9KSyjVP5/wceA84FNk3ztgKuBX4DPJnGJ+fWVwNOBX4KPAXcCGzTQqzLgb5hLrMIeG9uv76am7d92sfXpenfAm/Ozf8U8OMmt/N64EfAmrSey1L5LWkbTwP9wBGp/BPASuB/gGNTndcXbONVwDxgLXBbatOf5Ob/ETAfeAK4Hzg8le9Dlmgn5OoeBixqYr9mAz/LTU8k+xD/oybbZS2wV256A+AuYM9G+wzMBB4CVPV7ZDwMPrKwZt0KbCHpDZImADOA/xxQ53RgF2Aa2QfjJOAzad4rgG8BOwE7kn2YfGXA8u8HPgC8GtgI+If6DEmLJL2/jftTX293ivnufPEg43s0mJ+f18ipZElwK2AycDZAROyX5r8xsm/Nl0maTrb/7wCmAAc0uY2vAr8DtiNLMMe+EKg0kSxRfIesjWcAX5O0W0T8gixZ/XluXe9PdYvaf3fgl/WJiHgaeDCVNyRpGtn/emmu+OPALRGxqGDxmcBFkTKHdZaThQ3Ht4FjyD7A7gVW1GdIEtk3zI9HxBMR8RRZd84MgIh4PCKujIhn0rzTyLqC8r4VEb+KiGeBy8mSDmn5PSPiO+3cGUkbAhcDF0bEfan4B8DhkvaUtClZsgvWd7n9ADhJ0uapL/1Ymu+O+z1Zstw+In4XEY1OPB9O1h5L0ofvKU3szwTgvcBnIuLpiFhC1s1T95fAsoj4VkSsi4i7gCuBv0rzLyF1NUraHDgklRW1/2ZkR0t5a4DNC+Ldguw19S8RsSaV7QB8mPVfMoZadiey18+FjepZ+zhZ2HB8m+zb5izgogHztiX70LxD0mpJq8k+WLcFkPRKSV9PJ5bXknW9dKUPuLr8+YZnyD6EOkLSK8j253+BE+rlEfFD4GSyD9FlaXiKrHsL4GNkR0UPANeQfZjW5xX5R7Ijkdsk3S3p2AZ1tyc7t1L3SBPr35b152QGW24nYJ/6/yf9j44i6/uH7CjiPZI2Bt4D3BkRzWy3H9hiQNkWZO02qJSIvwfcGhGfy836EvDZevJo4Giy7rWHm4jP2sDJwpqWPjgeJvvGedWA2b8l+xDdPSK60rBlZCciAeYAuwL7RMQWQL3rRZQsHQWdB3STnav4fX5+RHw1IqZERDdZ0tgAWJLmPRERR0XEayJid7L30G3NbDcifh0RH4qI7cm+PX+twRVQK4EdctM7NrGJ3wDrGiz3KPCj3P+nK3V7/U2K7x6y5HIwuS6oJtwNvLE+kbq7XseLu/bIzd8Y+C5Zkv3wgNn7A5+X9GtJ9S8PPx+kC+wYfFRRKicLG67jgD9PXSMviIg/AN8AzpT0agBJkyQdlKpsTpZMVkvamuzbe9ukS2I3SZMbSdokJYXBnAO8AXhn6vLKr2cTSXsosyMwF/hyRDyZ5r9O0qskTUiX3M4G/jW3fG2oy2kl/ZWkyWnySbLurT+k6ceA1+aqXw7MkrSbpFfSRHtFxPNkSfyUdCS3G1m/ft21wC6Sjpa0YRreLOkNuTrfAf6OLJk3e5XR1cAekt6b/gefITsxft/Aiqnr7wqy18LM9LrJ24Us8UxjfTfkO9M26ut4C9n5MF8FVaaqz7B7GP0DWVfMAYOUb8CLr4bahOw8xUNkV7jcC3wszdue7IqnfuBXZN8oA9ggza8BH8ytexYvvornbuCoghhjwFCP61PA99P4Tmne71Is9eGoNL+L7Oqop8m6xT7Hi68QOpzs6qRngIXAQQPieBB4xxAx/gfZeZ7+VG92bt5HyI4mVrP+CqWTUgzDuRpqW7KkMNTVULsC15EdhTwO/DcwLTd/R7IEdt2A9Ra1/wHAfWRJoFZv+zTvXODcNP5naT+eGdD+fzrEel+yz8DXgW9X/b4Yb4NS45vZCKWjhssj4i1Vx2LWbk4WZmZWyOcszMaYdCXVwNte9Es6qurY7OXLRxZmZlZog6oD6JRtttkmenp6St3m008/zcSJE0vd5ljjNmrM7VPMbdTYSNrnjjvu+G1EbDvYvJdtsujp6WHBggWlbrNWq9HX11fqNscat1Fjbp9ibqPGRtI+kob8EabPWZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWaGO/YI7PUv3IrKnkQUwNyK+nB58cxnQQ/YMgsMj4sn0oJovkz2F7RlgVkTcmdY1E/h0WvW/RoSfkGXWJj0nXdfysstO/4s2RmKjWSePLNYBcyJiN2Bf4Pj05K6TgJsiYgpwU5qG7FGOU9Iwm+xpZuSeqrYPsDdwsqStOhi3mZkN0LFkEREr60cGEfEU2VPTJgGHsv7ZuRcC707jhwIXReZWoEvSdsBBwPzInn38JDAfmN6puM3M7KVKuZGgpB7gTcAvgO6IWJlm/ZqsmwqyRPJobrHlqWyo8sG2M5vsqITu7m5qtVp7dqBJ/f39pW9zrHEbNVZF+8yZuq7lZav4X/o11Fin2qfjyULSZsCVwIkRsTY7NZGJiJDUtgdqRMRcYC5Ab29vlH1nSt8Ns5jbqLEq2mfWSM5ZHNXXvkCa5NdQY51qn45eDSVpQ7JEcXFEXJWKH0vdS6S/q1L5CmCH3OKTU9lQ5WZmVpKOJYt0ddN5wL0R8cXcrHnAzDQ+E7gmV36MMvsCa1J31Q3AgZK2Sie2D0xlZmZWkk52Q70VOBpYLGlhKvsUcDpwuaTjgEeAw9O868kum11KdunsBwAi4glJpwK3p3qfjYgnOhi3mZkN0LFkERE/ATTE7P0HqR/A8UOs63zg/PZFZ2Zmw+FfcJuZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhUp5+JGZvTy1+vxuP7t77PGRhZmZFXKyMDOzQk4WZmZWyMnCzMwKdfKxqudLWiVpSa7sMkkL07Cs/gQ9ST2Sns3NOze3zF6SFktaKums9LhWMzMrUSevhroA+ApwUb0gIo6oj0s6A1iTq/9gREwbZD3nAB8CfkH26NXpwPfbH66ZmQ2lY0cWEXELMOizstPRweHAJY3WIWk7YIuIuDU9dvUi4N1tDtXMzApU9TuLPwUei4gHcmU7S7oLWAt8OiJ+DEwClufqLE9lg5I0G5gN0N3dTa1Wa3fcDfX395e+zbHGbdRYFe0zZ+q6UrcHjGgf/RpqrFPtU1WyOJIXH1WsBHaMiMcl7QV8V9Luw11pRMwF5gL09vZGX19fO2JtWq1Wo+xtjjVuo8aqaJ9ZLf6wbiSWHdXX8rJ+DTXWqfYpPVlI2gB4D7BXvSwingOeS+N3SHoQ2AVYAUzOLT45lZmZWYmquHT2AOC+iHihe0nStpImpPHXAlOAhyJiJbBW0r7pPMcxwDUVxGxmNq518tLZS4CfA7tKWi7puDRrBi89sb0fsChdSnsF8JGIqJ8c/yjwTWAp8CC+EsrMrHQd64aKiCOHKJ81SNmVwJVD1F8A7NHW4MzMbFj8C24zMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvUyceqni9plaQlubJTJK2QtDANh+TmfVLSUkn3SzooVz49lS2VdFKn4jUzs6F18sjiAmD6IOVnRsS0NFwPIGk3smdz756W+ZqkCZImAF8FDgZ2A45Mdc3MrESdfAb3LZJ6mqx+KHBpRDwHPCxpKbB3mrc0Ih4CkHRpqntPu+Mdd048Mfv7pS9VGYXZ6Of3CtDBZNHACZKOARYAcyLiSWAScGuuzvJUBvDogPJ9hlqxpNnAbIDu7m5qtVobwy7W399f+jZbNS3FudBtNKpU0T5zpq4rdXvAiPax7Daq6r3Sqk61T9nJ4hzgVCDS3zOAY9u18oiYC8wF6O3tjb6+vnatuim1Wo2yt9myri6A0uMdU21UgZG0T89J17W41fK/My47qq/lZUt/DVX0XmlVp9qn1FdJRDxWH5f0DeDaNLkC2CFXdXIqo0G5mZmVpNRLZyVtl5s8DKhfKTUPmCFpY0k7A1OA24DbgSmSdpa0EdlJ8HllxmxmZh08spB0CdAHbCNpOXAy0CdpGlk31DLgwwARcbeky8lOXK8Djo+I59N6TgBuACYA50fE3Z2K2czMBtfJq6GOHKT4vAb1TwNOG6T8euD6NoZmZhVr/fwKXDB9YhsjsWb5F9xmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCHUsWks6XtErSklzZ5yXdJ2mRpKsldaXyHknPSlqYhnNzy+wlabGkpZLOkqROxWxmZoPr5JHFBcD0AWXzgT0iYk/gV8Anc/MejIhpafhIrvwc4ENkz+WeMsg6zcyswzqWLCLiFuCJAWU3RsS6NHkrMLnROiRtB2wREbdGRAAXAe/uQLhmZtZAx57B3YRjgcty0ztLugtYC3w6In4MTAKW5+osT2WDkjQbmA3Q3d1NrVZrd8wN9ff3l77NVk1bvRqAhW6jUWUk7TNn6rriSi8DZb+GqnqvtKpT7VNJspD0z8A64OJUtBLYMSIel7QX8F1Juw93vRExF5gL0NvbG319fW2KuDm1Wo2yt9myri6A0uMdU21UgZG0z6yTrmtvMKPUBdMnlvsaqui90qpOvcdKTxaSZgF/CeyfupaIiOeA59L4HZIeBHYBVvDirqrJqczMzEpU6qWzkqYD/wi8KyKeyZVvK2lCGn8t2YnshyJiJbBW0r7pKqhjgGvKjNnMzFpIFpK2krRnE/UuAX4O7CppuaTjgK8AmwPzB1wiux+wSNJC4ArgIxFRPzn+UeCbwFLgQeD7w43ZzMxGpqluKEk14F2p/h3AKkk/jYi/H2qZiDhykOLzhqh7JXDlEPMWAHs0E6eZmXVGs0cWW0bEWuA9wEURsQ9wQOfCMjOz0aTZZLFB+s3D4cC1HYzHzMxGoWaTxb8ANwBLI+L2dBL6gc6FZWZmo0mzl86uTLfoACAiHpL0xQ7FZGZmo0yzRxZnN1lmZmYvQw2PLCT9CfAWYFtJ+SuftgAmdDIwMzMbPYq6oTYCNkv1Ns+VrwXe16mgzMxsdGmYLCLiR8CPJF0QEY+UFJOZmY0yzZ7g3ljSXKAnv0xE/HkngjIzs9Gl2WTxX8C5ZLfdeL5z4ZiZ2WjUbLJYFxHndDQSMzMbtZq9dPZ7kj4qaTtJW9eHjkZmZmajRrNHFjPT30/kygJ4bXvDMTOz0aipZBERO3c6EDMzG72avUX5MYOVR8RF7Q3HzMxGo2a7od6cG98E2B+4E3CyMDMbB5rthvrb/LSkLuDSTgRkZmajT6vP4H4aKDyPIel8SaskLcmVbS1pvqQH0t+tUrkknSVpqaRFkv44t8zMVP8BSTMH25aZmXVOU8lC0vckzUvDdcD9wNVNLHoBMH1A2UnATRExBbgpTQMcDExJw2zgnLTtrYGTgX2AvYGT6wnGzMzK0ew5iy/kxtcBj0TE8qKFIuIWST0Dig8F+tL4hUAN+KdUflFEBHCrpK70dL4+YH5EPAEgaT5ZArqkydjNzGyEmj1n8SNJ3aw/0T2Sp+R1R8TKNP5roDuNTwIezdVbnsqGKn8JSbPJjkro7u6mVquNIMzh6+/vL32brZq2ejUAC91Go8pI2mfO1HXtDWaUKvs1VNV7pVWdap9mL509HPg82VGAgLMlfSIirhjJxiMiJMVI1jFgfXOBuQC9vb3R19fXrlU3pVarUfY2W9bVBVB6vGOqjSowkvaZddJ17Q1mlLpg+sRyX0MVvVda1an3WLPdUP8MvDkiVgFI2hb4IdBKsnhM0nYRsTJ1M61K5SuAHXL1JqeyFazvtqqX11rYrpmZtajZq6FeUU8UyePDWHageay/fchM4Jpc+THpqqh9gTWpu+oG4EBJW6UT2wemMjMzK0mzRxY/kHQD608qHwFcX7SQpEvIjgq2kbSc7Kqm04HLJR0HPAIcnqpfDxwCLAWeAT4AEBFPSDoVuD3V+2z9ZLeZmZWj6Bncryc7If0JSe8B3pZm/Ry4uGjlEXHkELP2H6RuAMcPsZ7zgfOLtmdmZp1RdGTxJeCTABFxFXAVgKSpad47OxibmZmNEkXnHbojYvHAwlTW05GIzMxs1ClKFl0N5m3axjjMzGwUK0oWCyR9aGChpA8Cd3QmJDMzG22KzlmcCFwt6SjWJ4deYCPgsA7GZWZmo0jDZBERjwFvkfR2YI9UfF1E/HfHIzMzG8TiFWta+rX6stP/ogPRjB/N3hvqZuDmDsdiZmajVKu/wjYzs3Gk2V9wm1kJWu1iMes0H1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWqPRkIWlXSQtzw1pJJ0o6RdKKXPkhuWU+KWmppPslHVR2zGZm413pP8qLiPuBaQCSJgArgKvJHqN6ZkR8IV9f0m7ADGB3YHvgh5J2iYjny4zbzGw8q7oban/gwYh4pEGdQ4FLI+K5iHiY7Bnde5cSnZmZAdXf7mMGcElu+gRJxwALgDkR8SQwCbg1V2d5KnsJSbOB2QDd3d3UarVOxDyk/v7+0rfZqmmrVwOw0G00qnRvCnOmrqs6jFGt1TZq9XVX1XulVZ16j1WWLCRtBLyL9Ixv4BzgVCDS3zOAY4ezzoiYC8wF6O3tjb6+vnaF25RarUbZ22xZVxdA6fGOqTaqwNkXX8MZi6v+Dje6zZm6rqU2WnZUX2sbrOi90qpOvceq7IY6GLgzPTODiHgsIp6PiD8A32B9V9MKYIfccpNTmZmZlaTKZHEkuS4oSdvl5h0GLEnj84AZkjaWtDMwBbittCjNzKyabihJE4F3AB/OFf+HpGlk3VDL6vMi4m5JlwP3AOuA430llJlZuSpJFhHxNPCqAWVHN6h/GnBap+MyM7PBVX3prJmZjQFOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRXyk+HNbFzoOem6lpa79KHH2fe1ryqu+DJX2ZGFpGWSFktaKGlBKtta0nxJD6S/W6VySTpL0lJJiyT9cVVxm5mNR1V3Q709IqZFRG+aPgm4KSKmADelaYCDgSlpmA2cU3qkZmbjWNXJYqBDgQvT+IXAu3PlF0XmVqBL0nYVxGdmNi5Vec4igBslBfD1iJgLdEfEyjT/10B3Gp8EPJpbdnkqW5krQ9JssiMPuru7qdVqnYt+EP39/aVvs1XTVq8GYKHbaFTp3hTmTF1XdRijWtltNHlisHr16tLfK63q1HusymTxtohYIenVwHxJ9+VnRkSkRNK0lHDmAvT29kZfX1/bgm1GrVaj7G22rKsLoPR4x1QbVeDsi6/hjMW+7qSROVPXldpGb35a7NvdNWZet516j1XWDRURK9LfVcDVwN7AY/XupfR3Vaq+Atght/jkVGZmZiWoJFlImihp8/o4cCCwBJgHzEzVZgLXpPF5wDHpqqh9gTW57iozM+uwqo53u4GrJdVj+E5E/EDS7cDlko4DHgEOT/WvBw4BlgLPAB8oP2Qzs/GrkmQREQ8Bbxyk/HFg/0HKAzi+hNDMzGwQo+3SWTMzG4WcLMzMrJCThZmZFXKyMDOzQv71j1kHtHqH0zlT2xyIWZv4yMLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK1R6spC0g6SbJd0j6W5Jf5fKT5G0QtLCNBySW+aTkpZKul/SQWXHbGY23lVxI8F1wJyIuDM9h/sOSfPTvDMj4gv5ypJ2A2YAuwPbAz+UtEtEPF9q1GZm41jpRxYRsTIi7kzjTwH3ApMaLHIocGlEPBcRD5M9h3vvzkdqZmZ1ld6iXFIP8CbgF8BbgRMkHQMsIDv6eJIskdyaW2w5QyQXSbOB2QDd3d3UarWOxT6Y/v7+0rfZqmmrVwOw0G3UEXOmrmtpue5NW192vCi7jSZPDJY/9luuvviaYS87ddKWHYiosU69xypLFpI2A64EToyItZLOAU4FIv09Azh2OOuMiLnAXIDe3t7o6+tra8xFarUaZW+zZV1dAKXHO6baaARmtfw8i3WcsdiPmWmk7DZ689MCaGmby47qa3M0xTr1HqvkaihJG5Iliosj4iqAiHgsIp6PiD8A32B9V9MKYIfc4pNTmZmZlaSKq6EEnAfcGxFfzJVvl6t2GLAkjc8DZkjaWNLOwBTgtrLiNTOzarqh3gocDSyWtDCVfQo4UtI0sm6oZcCHASLibkmXA/eQXUl1vK+EMjMrV+nJIiJ+AmiQWdc3WOY04LSOBWVmZg35F9xmZlbIycLMzAo5WZiZWSFf0G02hJ4Wfyth9nLkIwszMyvkZGFmZoXcDWVmNgq12g16wfSJbY4k4yMLMzMr5GRhZmaF3A1lL3u+qsls5JwsbEzwB75ZtZwszMw65OX0JcfnLMzMrJCThZmZFXI3lJVq8Yo1LT9y1Myq4yMLMzMr5GRhZmaFxkw3lKTpwJeBCcA3I+L0ikMat0ZyhcecqW0MxMxKMyaShaQJwFeBdwDLgdslzYuIe6qN7MVG0h+/7PS/aHM0ZmbtMyaSBbA3sDQiHgKQdClwKDCqkkUVWv2Wf+lDjwMwwyebzawJioiqYygk6X3A9Ij4YJo+GtgnIk4YUG82MDtN7grcX2qgsA3w25K3Oda4jRpz+xRzGzU2kvbZKSK2HWzGWDmyaEpEzAXmVrV9SQsioreq7Y8FbqPG3D7F3EaNdap9xsrVUCuAHXLTk1OZmZmVYKwki9uBKZJ2lrQRMAOYV3FMZmbjxpjohoqIdZJOAG4gu3T2/Ii4u+KwBlNZF9gY4jZqzO1TzG3UWEfaZ0yc4DYzs2qNlW4oMzOrkJOFmZkVcrJogaTpku6XtFTSSYPM31jSZWn+LyT1VBBmZZpon1mSfiNpYRo+WEWcVZF0vqRVkpYMMV+Szkrtt0jSH5cdY9WaaKM+SWtyr6HPlB1jlSTtIOlmSfdIulvS3w1Sp62vIyeLYcrdeuRgYDfgSEm7Dah2HPBkRLweOBP493KjrE6T7QNwWURMS8M3Sw2yehcA0xvMPxiYkobZwDklxDTaXEDjNgL4ce419NkSYhpN1gFzImI3YF/g+EHeZ219HTlZDN8Ltx6JiP8F6rceyTsUuDCNXwHsL0klxlilZtpnXIuIW4AnGlQ5FLgoMrcCXZK2Kye60aGJNhrXImJlRNyZxp8C7gUmDajW1teRk8XwTQIezU0v56X/pBfqRMQ6YA3wqlKiq14z7QPw3nRofIWkHQaZP54124bj3Z9I+qWk70vavepgqpK6ud8E/GLArLa+jpwsrArfA3oiYk9gPuuPwsyadSfZfYzeCJwNfLfacKohaTPgSuDEiFjbyW05WQxfM7ceeaGOpA2ALYHHS4mueoXtExGPR8RzafKbwF4lxTZW+PY2BSJibUT0p/HrgQ0lbVNxWKWStCFZorg4Iq4apEpbX0dOFsPXzK1H5gEz0/j7gP+O8fPrx8L2GdBv+i6y/lZbbx5wTLqaZV9gTUSsrDqo0UTSa+rnASXtTfZZNl6+kJH2/Tzg3oj44hDV2vo6GhO3+xhNhrr1iKTPAgsiYh7ZP/HbkpaSnaSbUV3E5WqyfT4m6V1kV3Q8AcyqLOAKSLoE6AO2kbQcOBnYECAizgWuBw4BlgLPAB+oJtLqNNFG7wP+RtI64Flgxjj6QgbwVuBoYLGkhansU8CO0JnXkW/3YWZmhdwNZWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLaStLzuTuBLpTUI+lnaV6PpPfn6k6TdEgL26hJGvED6SX1SjprmMtcL6lrpNvuJEldkj5a4fY/NYJlZ0navp3xWHs4WVi7PZu7E+i0iFgWEW9J83qA9+fqTiO7DrwSEbEgIj42zGUOiYjVHQqpXbqAypIF2fX+rZoFOFmMQk4W1nGS+tPo6cCfpiOOfwI+CxyRpo+QNDE9x+A2SXdJOjQtv6mkSyXdK+lqYNMhtnOIpPsk3ZHu439tKt9b0s/TOn8maddU3perc0radk3SQ5IGTSKSlknaJh0l3SvpG+l5AjdKeklckt6p7Jkmd0n6oaTuVL6ZpG9JWpxuqPjeVD5d0p3pBnk3pbKh2mWWpGtSzA9IOjnXzq9L7fr5tK2b0noX55Yfch8kvT7F+8u03OtS+Sck3Z5i/pdB9vd0YNO07YtT2V+n2BdK+rqkCWm4QNKSFNPHJb0P6AUuTnUH/T9bRSLCg4e2DcDzwMI0XJ3K+tPfPuDaXN1ZwFdy0/8G/HUa7wJ+BUwE/p7sl+AAe5L98rt3wHY3IbvD5s5p+pL6toAtgA3S+AHAlQPjAU4BfgZsDGxDduuIDQfZv2Vpfk+KY1oqv7we+4D6W7H+x68fBM5I4/8OfGlAvW0H7MPWBe0yC1hJdkfjTYElZB+2PcCS3Lo3ALZI49uQ/aJXjfaB7A6mh+Xa9pXAgcDctOwrgGuB/QbZ5/7c+BvIbhy5YZr+GnAM2f3A5ufqdaW/tYH/Ww+jY/DtPqzdno2IaS0ueyDwLkn/kKY3Ibt9wX7AWQARsUjSokGW/SPgoYh4OE1fQvbAF8hu5HihpClAkG4bMYjrIrvB4XOSVgHdZLd1HsrDEbEwjd9B9uE70GTgMmX3w9oIqMd3ALnbwETEk5LeCdxS34eIqD/PYah2gewD93EASVcBb+Old2AV8G+S9gP+QHab6u6h9kHS5sCkiLg6xfG7tP4DUyx3pfqbkT1Y55bBmweA/ckSw+3KbuW0KbCKLIG8VtLZwHXAjQ3WYaOAk4WNJgLeGxH3v6hw5M+NOhW4OSIOU3bv/9oQ9Z7LjT9P8ftjYP3Buk3OBr4YEfMk9ZEdwQzXUO2yD1nyyxvs/j1HkR217BURv5e0jCzhQHP7kI/jcxHx9WHGfmFEfPIlM6Q3AgcBHwEOB44dxnqtZD5nYWV6Cti8wfQNwN9KL9xN9E2p/BbSiXFJe5B1RQ10P9k31Z40fURu3pasvzXzrNbDb0l+2zNz5fOB4+sTkrYCbgX2k7RzKts6zR6qXQDeIWnr1L//buCnvLRdtwRWpUTxdmCnRgFH9uS15ZLenba3saRXpjiOVfYMBSRNkvTqQVbxe2W3zwa4CXhfvV6KdSdltxN/RURcCXwaqD8femDsNko4WViZFgHPp5OmHwduBnZLJzOPIDsC2BBYJOnuNA3Zs4M3k3Qv2UnxOwauOCKeJbsC6AeS7iD70FmTZv8H8DlJd1H+0fQpwH+lmH6bK/9XYKt0gveXwNsj4jdkXWdXpbLLUt2h2gXgNrJnGiwiOxezIHVL/TSt+/PAxUCvpMVk5wvuayLuo8nuDryI7FzOayLiRuA7wM/Tuq5g8A/2uSnWiyPiHrJkcGNa13xgO7KusJqyO6b+J1A/8rgAONcnuEcf33XWXjYkbRYR/ekb+FeBByLizKrj6hRJs8hOBp9QdSz28ucjC3s5+VD6pno3WdfLcPrWzawBH1mYmVkhH1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFfo/iH9INaFuDUYAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "###\n",
+    "### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is\n",
+    "###\n",
+    "bins = np.arange( -0.1, 2.1, 0.1 )\n",
+    "\n",
+    "df_gains = df_pmt[gain_keys].stack().reset_index()\n",
+    "df_gains = df_gains[ df_gains[0] < 2.5 ]\n",
+    "df_gains.hist(bins=bins)\n",
+    "\n",
+    "plt.plot([0.3,0.3], [0,1500], color='red')\n",
+    "plt.plot([1.7,1.7], [0,1500], color='red')\n",
+    "plt.xlabel(\"Fitted gain in acceptance test\")\n",
+    "plt.ylabel(\"Counts\")\n",
+    "plt.title(\"Mean: {}, std_dev: {}\".format( round(df_gains[0].mean(),3), round(df_gains[0].std(),3) ) )\n"
+   ]
   }
  ],
  "metadata": {
diff --git a/pmt_gain.ipynb b/pmt_gain.ipynb
index c786539..1674cc1 100644
--- a/pmt_gain.ipynb
+++ b/pmt_gain.ipynb
@@ -196,7 +196,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 201,
+   "execution_count": 215,
    "id": "4eaed37c-3cae-44ef-88db-fac0ce64acbf",
    "metadata": {},
    "outputs": [
@@ -206,7 +206,7 @@
        "Text(0.5, 1.0, 'Location: Amsterdam')"
       ]
      },
-     "execution_count": 201,
+     "execution_count": 215,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -260,11 +260,49 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 273,
    "id": "ca1f27e5-fecb-42d5-8e17-dd58da923f08",
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')"
+      ]
+     },
+     "execution_count": 273,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkFElEQVR4nO3dfZwdZXn/8c/X8Gh4WBBcIQEWNVCBYCwrULV0LQiBVhG1EKSQCBqtUItNbdH6Eyql0iqioIJRELDIQ3mQCChEyhGfEALEJDxJgPAjaSQKJGEBqcGrf8x9yLDsnjl79pyZXfb7fr3mtTP33DNzzb3nnOvMPXNmFBGYmZk18oqqAzAzs9HPycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwGyMkhaTXD3OZWZJ+0qmYbPxwsrBCkpZJ+l9J2wwovyt9gPVUFFo9jo0kXZHiDEl9DepuLOk8SY9IekrSQkkHD6jzQUlLJfVL+oGk7XPzuiRdKGlVGk5p0z4MOxGMJpL2l3SfpGck3SxppyHqvVrSJZL+R9IaST+VtM8Qdc8f2C7pf5Ifnpd0dqf2y9ZzsrBmPQwcWZ+QNBV4ZXXhvMRPgL8Gfl1QbwPgUeDPgC2BTwOX1xNeSjT/BhwKbE2235fklj+TbL97gL2BoyV9oD27MDalLxFXAf+PrM0WAJcNUX0z4HZgr1T3QuA6SZsNWOfbgNcNXDgiNqsPwGuAZ4H/atOuWCMR4cFDwwFYRvahenuu7AvAPwMB9KSyjVP5/wceA84FNk3ztgKuBX4DPJnGJ+fWVwNOBX4KPAXcCGzTQqzLgb5hLrMIeG9uv76am7d92sfXpenfAm/Ozf8U8OMmt/N64EfAmrSey1L5LWkbTwP9wBGp/BPASuB/gGNTndcXbONVwDxgLXBbatOf5Ob/ETAfeAK4Hzg8le9Dlmgn5OoeBixqYr9mAz/LTU8k+xD/oybbZS2wV256A+AuYM9G+wzMBB4CVPV7ZDwMPrKwZt0KbCHpDZImADOA/xxQ53RgF2Aa2QfjJOAzad4rgG8BOwE7kn2YfGXA8u8HPgC8GtgI+If6DEmLJL2/jftTX293ivnufPEg43s0mJ+f18ipZElwK2AycDZAROyX5r8xsm/Nl0maTrb/7wCmAAc0uY2vAr8DtiNLMMe+EKg0kSxRfIesjWcAX5O0W0T8gixZ/XluXe9PdYvaf3fgl/WJiHgaeDCVNyRpGtn/emmu+OPALRGxqGDxmcBFkTKHdZaThQ3Ht4FjyD7A7gVW1GdIEtk3zI9HxBMR8RRZd84MgIh4PCKujIhn0rzTyLqC8r4VEb+KiGeBy8mSDmn5PSPiO+3cGUkbAhcDF0bEfan4B8DhkvaUtClZsgvWd7n9ADhJ0uapL/1Ymu+O+z1Zstw+In4XEY1OPB9O1h5L0ofvKU3szwTgvcBnIuLpiFhC1s1T95fAsoj4VkSsi4i7gCuBv0rzLyF1NUraHDgklRW1/2ZkR0t5a4DNC+Ldguw19S8RsSaV7QB8mPVfMoZadiey18+FjepZ+zhZ2HB8m+zb5izgogHztiX70LxD0mpJq8k+WLcFkPRKSV9PJ5bXknW9dKUPuLr8+YZnyD6EOkLSK8j253+BE+rlEfFD4GSyD9FlaXiKrHsL4GNkR0UPANeQfZjW5xX5R7Ijkdsk3S3p2AZ1tyc7t1L3SBPr35b152QGW24nYJ/6/yf9j44i6/uH7CjiPZI2Bt4D3BkRzWy3H9hiQNkWZO02qJSIvwfcGhGfy836EvDZevJo4Giy7rWHm4jP2sDJwpqWPjgeJvvGedWA2b8l+xDdPSK60rBlZCciAeYAuwL7RMQWQL3rRZQsHQWdB3STnav4fX5+RHw1IqZERDdZ0tgAWJLmPRERR0XEayJid7L30G3NbDcifh0RH4qI7cm+PX+twRVQK4EdctM7NrGJ3wDrGiz3KPCj3P+nK3V7/U2K7x6y5HIwuS6oJtwNvLE+kbq7XseLu/bIzd8Y+C5Zkv3wgNn7A5+X9GtJ9S8PPx+kC+wYfFRRKicLG67jgD9PXSMviIg/AN8AzpT0agBJkyQdlKpsTpZMVkvamuzbe9ukS2I3SZMbSdokJYXBnAO8AXhn6vLKr2cTSXsosyMwF/hyRDyZ5r9O0qskTUiX3M4G/jW3fG2oy2kl/ZWkyWnySbLurT+k6ceA1+aqXw7MkrSbpFfSRHtFxPNkSfyUdCS3G1m/ft21wC6Sjpa0YRreLOkNuTrfAf6OLJk3e5XR1cAekt6b/gefITsxft/Aiqnr7wqy18LM9LrJ24Us8UxjfTfkO9M26ut4C9n5MF8FVaaqz7B7GP0DWVfMAYOUb8CLr4bahOw8xUNkV7jcC3wszdue7IqnfuBXZN8oA9ggza8BH8ytexYvvornbuCoghhjwFCP61PA99P4Tmne71Is9eGoNL+L7Oqop8m6xT7Hi68QOpzs6qRngIXAQQPieBB4xxAx/gfZeZ7+VG92bt5HyI4mVrP+CqWTUgzDuRpqW7KkMNTVULsC15EdhTwO/DcwLTd/R7IEdt2A9Ra1/wHAfWRJoFZv+zTvXODcNP5naT+eGdD+fzrEel+yz8DXgW9X/b4Yb4NS45vZCKWjhssj4i1Vx2LWbk4WZmZWyOcszMaYdCXVwNte9Es6qurY7OXLRxZmZlZog6oD6JRtttkmenp6St3m008/zcSJE0vd5ljjNmrM7VPMbdTYSNrnjjvu+G1EbDvYvJdtsujp6WHBggWlbrNWq9HX11fqNscat1Fjbp9ibqPGRtI+kob8EabPWZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWaGO/YI7PUv3IrKnkQUwNyK+nB58cxnQQ/YMgsMj4sn0oJovkz2F7RlgVkTcmdY1E/h0WvW/RoSfkGXWJj0nXdfysstO/4s2RmKjWSePLNYBcyJiN2Bf4Pj05K6TgJsiYgpwU5qG7FGOU9Iwm+xpZuSeqrYPsDdwsqStOhi3mZkN0LFkEREr60cGEfEU2VPTJgGHsv7ZuRcC707jhwIXReZWoEvSdsBBwPzInn38JDAfmN6puM3M7KVKuZGgpB7gTcAvgO6IWJlm/ZqsmwqyRPJobrHlqWyo8sG2M5vsqITu7m5qtVp7dqBJ/f39pW9zrHEbNVZF+8yZuq7lZav4X/o11Fin2qfjyULSZsCVwIkRsTY7NZGJiJDUtgdqRMRcYC5Ab29vlH1nSt8Ns5jbqLEq2mfWSM5ZHNXXvkCa5NdQY51qn45eDSVpQ7JEcXFEXJWKH0vdS6S/q1L5CmCH3OKTU9lQ5WZmVpKOJYt0ddN5wL0R8cXcrHnAzDQ+E7gmV36MMvsCa1J31Q3AgZK2Sie2D0xlZmZWkk52Q70VOBpYLGlhKvsUcDpwuaTjgEeAw9O868kum11KdunsBwAi4glJpwK3p3qfjYgnOhi3mZkN0LFkERE/ATTE7P0HqR/A8UOs63zg/PZFZ2Zmw+FfcJuZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhUp5+JGZvTy1+vxuP7t77PGRhZmZFXKyMDOzQk4WZmZWyMnCzMwKdfKxqudLWiVpSa7sMkkL07Cs/gQ9ST2Sns3NOze3zF6SFktaKums9LhWMzMrUSevhroA+ApwUb0gIo6oj0s6A1iTq/9gREwbZD3nAB8CfkH26NXpwPfbH66ZmQ2lY0cWEXELMOizstPRweHAJY3WIWk7YIuIuDU9dvUi4N1tDtXMzApU9TuLPwUei4gHcmU7S7oLWAt8OiJ+DEwClufqLE9lg5I0G5gN0N3dTa1Wa3fcDfX395e+zbHGbdRYFe0zZ+q6UrcHjGgf/RpqrFPtU1WyOJIXH1WsBHaMiMcl7QV8V9Luw11pRMwF5gL09vZGX19fO2JtWq1Wo+xtjjVuo8aqaJ9ZLf6wbiSWHdXX8rJ+DTXWqfYpPVlI2gB4D7BXvSwingOeS+N3SHoQ2AVYAUzOLT45lZmZWYmquHT2AOC+iHihe0nStpImpPHXAlOAhyJiJbBW0r7pPMcxwDUVxGxmNq518tLZS4CfA7tKWi7puDRrBi89sb0fsChdSnsF8JGIqJ8c/yjwTWAp8CC+EsrMrHQd64aKiCOHKJ81SNmVwJVD1F8A7NHW4MzMbFj8C24zMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvUyceqni9plaQlubJTJK2QtDANh+TmfVLSUkn3SzooVz49lS2VdFKn4jUzs6F18sjiAmD6IOVnRsS0NFwPIGk3smdz756W+ZqkCZImAF8FDgZ2A45Mdc3MrESdfAb3LZJ6mqx+KHBpRDwHPCxpKbB3mrc0Ih4CkHRpqntPu+Mdd048Mfv7pS9VGYXZ6Of3CtDBZNHACZKOARYAcyLiSWAScGuuzvJUBvDogPJ9hlqxpNnAbIDu7m5qtVobwy7W399f+jZbNS3FudBtNKpU0T5zpq4rdXvAiPax7Daq6r3Sqk61T9nJ4hzgVCDS3zOAY9u18oiYC8wF6O3tjb6+vnatuim1Wo2yt9myri6A0uMdU21UgZG0T89J17W41fK/My47qq/lZUt/DVX0XmlVp9qn1FdJRDxWH5f0DeDaNLkC2CFXdXIqo0G5mZmVpNRLZyVtl5s8DKhfKTUPmCFpY0k7A1OA24DbgSmSdpa0EdlJ8HllxmxmZh08spB0CdAHbCNpOXAy0CdpGlk31DLgwwARcbeky8lOXK8Djo+I59N6TgBuACYA50fE3Z2K2czMBtfJq6GOHKT4vAb1TwNOG6T8euD6NoZmZhVr/fwKXDB9YhsjsWb5F9xmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCHUsWks6XtErSklzZ5yXdJ2mRpKsldaXyHknPSlqYhnNzy+wlabGkpZLOkqROxWxmZoPr5JHFBcD0AWXzgT0iYk/gV8Anc/MejIhpafhIrvwc4ENkz+WeMsg6zcyswzqWLCLiFuCJAWU3RsS6NHkrMLnROiRtB2wREbdGRAAXAe/uQLhmZtZAx57B3YRjgcty0ztLugtYC3w6In4MTAKW5+osT2WDkjQbmA3Q3d1NrVZrd8wN9ff3l77NVk1bvRqAhW6jUWUk7TNn6rriSi8DZb+GqnqvtKpT7VNJspD0z8A64OJUtBLYMSIel7QX8F1Juw93vRExF5gL0NvbG319fW2KuDm1Wo2yt9myri6A0uMdU21UgZG0z6yTrmtvMKPUBdMnlvsaqui90qpOvcdKTxaSZgF/CeyfupaIiOeA59L4HZIeBHYBVvDirqrJqczMzEpU6qWzkqYD/wi8KyKeyZVvK2lCGn8t2YnshyJiJbBW0r7pKqhjgGvKjNnMzFpIFpK2krRnE/UuAX4O7CppuaTjgK8AmwPzB1wiux+wSNJC4ArgIxFRPzn+UeCbwFLgQeD7w43ZzMxGpqluKEk14F2p/h3AKkk/jYi/H2qZiDhykOLzhqh7JXDlEPMWAHs0E6eZmXVGs0cWW0bEWuA9wEURsQ9wQOfCMjOz0aTZZLFB+s3D4cC1HYzHzMxGoWaTxb8ANwBLI+L2dBL6gc6FZWZmo0mzl86uTLfoACAiHpL0xQ7FZGZmo0yzRxZnN1lmZmYvQw2PLCT9CfAWYFtJ+SuftgAmdDIwMzMbPYq6oTYCNkv1Ns+VrwXe16mgzMxsdGmYLCLiR8CPJF0QEY+UFJOZmY0yzZ7g3ljSXKAnv0xE/HkngjIzs9Gl2WTxX8C5ZLfdeL5z4ZiZ2WjUbLJYFxHndDQSMzMbtZq9dPZ7kj4qaTtJW9eHjkZmZmajRrNHFjPT30/kygJ4bXvDMTOz0aipZBERO3c6EDMzG72avUX5MYOVR8RF7Q3HzMxGo2a7od6cG98E2B+4E3CyMDMbB5rthvrb/LSkLuDSTgRkZmajT6vP4H4aKDyPIel8SaskLcmVbS1pvqQH0t+tUrkknSVpqaRFkv44t8zMVP8BSTMH25aZmXVOU8lC0vckzUvDdcD9wNVNLHoBMH1A2UnATRExBbgpTQMcDExJw2zgnLTtrYGTgX2AvYGT6wnGzMzK0ew5iy/kxtcBj0TE8qKFIuIWST0Dig8F+tL4hUAN+KdUflFEBHCrpK70dL4+YH5EPAEgaT5ZArqkydjNzGyEmj1n8SNJ3aw/0T2Sp+R1R8TKNP5roDuNTwIezdVbnsqGKn8JSbPJjkro7u6mVquNIMzh6+/vL32brZq2ejUAC91Go8pI2mfO1HXtDWaUKvs1VNV7pVWdap9mL509HPg82VGAgLMlfSIirhjJxiMiJMVI1jFgfXOBuQC9vb3R19fXrlU3pVarUfY2W9bVBVB6vGOqjSowkvaZddJ17Q1mlLpg+sRyX0MVvVda1an3WLPdUP8MvDkiVgFI2hb4IdBKsnhM0nYRsTJ1M61K5SuAHXL1JqeyFazvtqqX11rYrpmZtajZq6FeUU8UyePDWHageay/fchM4Jpc+THpqqh9gTWpu+oG4EBJW6UT2wemMjMzK0mzRxY/kHQD608qHwFcX7SQpEvIjgq2kbSc7Kqm04HLJR0HPAIcnqpfDxwCLAWeAT4AEBFPSDoVuD3V+2z9ZLeZmZWj6Bncryc7If0JSe8B3pZm/Ry4uGjlEXHkELP2H6RuAMcPsZ7zgfOLtmdmZp1RdGTxJeCTABFxFXAVgKSpad47OxibmZmNEkXnHbojYvHAwlTW05GIzMxs1ClKFl0N5m3axjjMzGwUK0oWCyR9aGChpA8Cd3QmJDMzG22KzlmcCFwt6SjWJ4deYCPgsA7GZWZmo0jDZBERjwFvkfR2YI9UfF1E/HfHIzMzG8TiFWta+rX6stP/ogPRjB/N3hvqZuDmDsdiZmajVKu/wjYzs3Gk2V9wm1kJWu1iMes0H1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWqPRkIWlXSQtzw1pJJ0o6RdKKXPkhuWU+KWmppPslHVR2zGZm413pP8qLiPuBaQCSJgArgKvJHqN6ZkR8IV9f0m7ADGB3YHvgh5J2iYjny4zbzGw8q7oban/gwYh4pEGdQ4FLI+K5iHiY7Bnde5cSnZmZAdXf7mMGcElu+gRJxwALgDkR8SQwCbg1V2d5KnsJSbOB2QDd3d3UarVOxDyk/v7+0rfZqmmrVwOw0G00qnRvCnOmrqs6jFGt1TZq9XVX1XulVZ16j1WWLCRtBLyL9Ixv4BzgVCDS3zOAY4ezzoiYC8wF6O3tjb6+vnaF25RarUbZ22xZVxdA6fGOqTaqwNkXX8MZi6v+Dje6zZm6rqU2WnZUX2sbrOi90qpOvceq7IY6GLgzPTODiHgsIp6PiD8A32B9V9MKYIfccpNTmZmZlaTKZHEkuS4oSdvl5h0GLEnj84AZkjaWtDMwBbittCjNzKyabihJE4F3AB/OFf+HpGlk3VDL6vMi4m5JlwP3AOuA430llJlZuSpJFhHxNPCqAWVHN6h/GnBap+MyM7PBVX3prJmZjQFOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRXyk+HNbFzoOem6lpa79KHH2fe1ryqu+DJX2ZGFpGWSFktaKGlBKtta0nxJD6S/W6VySTpL0lJJiyT9cVVxm5mNR1V3Q709IqZFRG+aPgm4KSKmADelaYCDgSlpmA2cU3qkZmbjWNXJYqBDgQvT+IXAu3PlF0XmVqBL0nYVxGdmNi5Vec4igBslBfD1iJgLdEfEyjT/10B3Gp8EPJpbdnkqW5krQ9JssiMPuru7qdVqnYt+EP39/aVvs1XTVq8GYKHbaFTp3hTmTF1XdRijWtltNHlisHr16tLfK63q1HusymTxtohYIenVwHxJ9+VnRkSkRNK0lHDmAvT29kZfX1/bgm1GrVaj7G22rKsLoPR4x1QbVeDsi6/hjMW+7qSROVPXldpGb35a7NvdNWZet516j1XWDRURK9LfVcDVwN7AY/XupfR3Vaq+Atght/jkVGZmZiWoJFlImihp8/o4cCCwBJgHzEzVZgLXpPF5wDHpqqh9gTW57iozM+uwqo53u4GrJdVj+E5E/EDS7cDlko4DHgEOT/WvBw4BlgLPAB8oP2Qzs/GrkmQREQ8Bbxyk/HFg/0HKAzi+hNDMzGwQo+3SWTMzG4WcLMzMrJCThZmZFXKyMDOzQv71j1kHtHqH0zlT2xyIWZv4yMLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK1R6spC0g6SbJd0j6W5Jf5fKT5G0QtLCNBySW+aTkpZKul/SQWXHbGY23lVxI8F1wJyIuDM9h/sOSfPTvDMj4gv5ypJ2A2YAuwPbAz+UtEtEPF9q1GZm41jpRxYRsTIi7kzjTwH3ApMaLHIocGlEPBcRD5M9h3vvzkdqZmZ1ld6iXFIP8CbgF8BbgRMkHQMsIDv6eJIskdyaW2w5QyQXSbOB2QDd3d3UarWOxT6Y/v7+0rfZqmmrVwOw0G3UEXOmrmtpue5NW192vCi7jSZPDJY/9luuvviaYS87ddKWHYiosU69xypLFpI2A64EToyItZLOAU4FIv09Azh2OOuMiLnAXIDe3t7o6+tra8xFarUaZW+zZV1dAKXHO6baaARmtfw8i3WcsdiPmWmk7DZ689MCaGmby47qa3M0xTr1HqvkaihJG5Iliosj4iqAiHgsIp6PiD8A32B9V9MKYIfc4pNTmZmZlaSKq6EEnAfcGxFfzJVvl6t2GLAkjc8DZkjaWNLOwBTgtrLiNTOzarqh3gocDSyWtDCVfQo4UtI0sm6oZcCHASLibkmXA/eQXUl1vK+EMjMrV+nJIiJ+AmiQWdc3WOY04LSOBWVmZg35F9xmZlbIycLMzAo5WZiZWSFf0G02hJ4Wfyth9nLkIwszMyvkZGFmZoXcDWVmNgq12g16wfSJbY4k4yMLMzMr5GRhZmaF3A1lL3u+qsls5JwsbEzwB75ZtZwszMw65OX0JcfnLMzMrJCThZmZFXI3lJVq8Yo1LT9y1Myq4yMLMzMr5GRhZmaFxkw3lKTpwJeBCcA3I+L0ikMat0ZyhcecqW0MxMxKMyaShaQJwFeBdwDLgdslzYuIe6qN7MVG0h+/7PS/aHM0ZmbtMyaSBbA3sDQiHgKQdClwKDCqkkUVWv2Wf+lDjwMwwyebzawJioiqYygk6X3A9Ij4YJo+GtgnIk4YUG82MDtN7grcX2qgsA3w25K3Oda4jRpz+xRzGzU2kvbZKSK2HWzGWDmyaEpEzAXmVrV9SQsioreq7Y8FbqPG3D7F3EaNdap9xsrVUCuAHXLTk1OZmZmVYKwki9uBKZJ2lrQRMAOYV3FMZmbjxpjohoqIdZJOAG4gu3T2/Ii4u+KwBlNZF9gY4jZqzO1TzG3UWEfaZ0yc4DYzs2qNlW4oMzOrkJOFmZkVcrJogaTpku6XtFTSSYPM31jSZWn+LyT1VBBmZZpon1mSfiNpYRo+WEWcVZF0vqRVkpYMMV+Szkrtt0jSH5cdY9WaaKM+SWtyr6HPlB1jlSTtIOlmSfdIulvS3w1Sp62vIyeLYcrdeuRgYDfgSEm7Dah2HPBkRLweOBP493KjrE6T7QNwWURMS8M3Sw2yehcA0xvMPxiYkobZwDklxDTaXEDjNgL4ce419NkSYhpN1gFzImI3YF/g+EHeZ219HTlZDN8Ltx6JiP8F6rceyTsUuDCNXwHsL0klxlilZtpnXIuIW4AnGlQ5FLgoMrcCXZK2Kye60aGJNhrXImJlRNyZxp8C7gUmDajW1teRk8XwTQIezU0v56X/pBfqRMQ6YA3wqlKiq14z7QPw3nRofIWkHQaZP54124bj3Z9I+qWk70vavepgqpK6ud8E/GLArLa+jpwsrArfA3oiYk9gPuuPwsyadSfZfYzeCJwNfLfacKohaTPgSuDEiFjbyW05WQxfM7ceeaGOpA2ALYHHS4mueoXtExGPR8RzafKbwF4lxTZW+PY2BSJibUT0p/HrgQ0lbVNxWKWStCFZorg4Iq4apEpbX0dOFsPXzK1H5gEz0/j7gP+O8fPrx8L2GdBv+i6y/lZbbx5wTLqaZV9gTUSsrDqo0UTSa+rnASXtTfZZNl6+kJH2/Tzg3oj44hDV2vo6GhO3+xhNhrr1iKTPAgsiYh7ZP/HbkpaSnaSbUV3E5WqyfT4m6V1kV3Q8AcyqLOAKSLoE6AO2kbQcOBnYECAizgWuBw4BlgLPAB+oJtLqNNFG7wP+RtI64Flgxjj6QgbwVuBoYLGkhansU8CO0JnXkW/3YWZmhdwNZWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLaStLzuTuBLpTUI+lnaV6PpPfn6k6TdEgL26hJGvED6SX1SjprmMtcL6lrpNvuJEldkj5a4fY/NYJlZ0navp3xWHs4WVi7PZu7E+i0iFgWEW9J83qA9+fqTiO7DrwSEbEgIj42zGUOiYjVHQqpXbqAypIF2fX+rZoFOFmMQk4W1nGS+tPo6cCfpiOOfwI+CxyRpo+QNDE9x+A2SXdJOjQtv6mkSyXdK+lqYNMhtnOIpPsk3ZHu439tKt9b0s/TOn8maddU3perc0radk3SQ5IGTSKSlknaJh0l3SvpG+l5AjdKeklckt6p7Jkmd0n6oaTuVL6ZpG9JWpxuqPjeVD5d0p3pBnk3pbKh2mWWpGtSzA9IOjnXzq9L7fr5tK2b0noX55Yfch8kvT7F+8u03OtS+Sck3Z5i/pdB9vd0YNO07YtT2V+n2BdK+rqkCWm4QNKSFNPHJb0P6AUuTnUH/T9bRSLCg4e2DcDzwMI0XJ3K+tPfPuDaXN1ZwFdy0/8G/HUa7wJ+BUwE/p7sl+AAe5L98rt3wHY3IbvD5s5p+pL6toAtgA3S+AHAlQPjAU4BfgZsDGxDduuIDQfZv2Vpfk+KY1oqv7we+4D6W7H+x68fBM5I4/8OfGlAvW0H7MPWBe0yC1hJdkfjTYElZB+2PcCS3Lo3ALZI49uQ/aJXjfaB7A6mh+Xa9pXAgcDctOwrgGuB/QbZ5/7c+BvIbhy5YZr+GnAM2f3A5ufqdaW/tYH/Ww+jY/DtPqzdno2IaS0ueyDwLkn/kKY3Ibt9wX7AWQARsUjSokGW/SPgoYh4OE1fQvbAF8hu5HihpClAkG4bMYjrIrvB4XOSVgHdZLd1HsrDEbEwjd9B9uE70GTgMmX3w9oIqMd3ALnbwETEk5LeCdxS34eIqD/PYah2gewD93EASVcBb+Old2AV8G+S9gP+QHab6u6h9kHS5sCkiLg6xfG7tP4DUyx3pfqbkT1Y55bBmweA/ckSw+3KbuW0KbCKLIG8VtLZwHXAjQ3WYaOAk4WNJgLeGxH3v6hw5M+NOhW4OSIOU3bv/9oQ9Z7LjT9P8ftjYP3Buk3OBr4YEfMk9ZEdwQzXUO2yD1nyyxvs/j1HkR217BURv5e0jCzhQHP7kI/jcxHx9WHGfmFEfPIlM6Q3AgcBHwEOB44dxnqtZD5nYWV6Cti8wfQNwN9KL9xN9E2p/BbSiXFJe5B1RQ10P9k31Z40fURu3pasvzXzrNbDb0l+2zNz5fOB4+sTkrYCbgX2k7RzKts6zR6qXQDeIWnr1L//buCnvLRdtwRWpUTxdmCnRgFH9uS15ZLenba3saRXpjiOVfYMBSRNkvTqQVbxe2W3zwa4CXhfvV6KdSdltxN/RURcCXwaqD8femDsNko4WViZFgHPp5OmHwduBnZLJzOPIDsC2BBYJOnuNA3Zs4M3k3Qv2UnxOwauOCKeJbsC6AeS7iD70FmTZv8H8DlJd1H+0fQpwH+lmH6bK/9XYKt0gveXwNsj4jdkXWdXpbLLUt2h2gXgNrJnGiwiOxezIHVL/TSt+/PAxUCvpMVk5wvuayLuo8nuDryI7FzOayLiRuA7wM/Tuq5g8A/2uSnWiyPiHrJkcGNa13xgO7KusJqyO6b+J1A/8rgAONcnuEcf33XWXjYkbRYR/ekb+FeBByLizKrj6hRJs8hOBp9QdSz28ucjC3s5+VD6pno3WdfLcPrWzawBH1mYmVkhH1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFfo/iH9INaFuDUYAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "###\n",
+    "### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is\n",
+    "###\n",
+    "bins = np.arange( -0.1, 2.1, 0.1 )\n",
+    "\n",
+    "df_gains = df_pmt[gain_keys].stack().reset_index()\n",
+    "df_gains = df_gains[ df_gains[0] < 2.5 ]\n",
+    "df_gains.hist(bins=bins)\n",
+    "\n",
+    "plt.plot([0.3,0.3], [0,1500], color='red')\n",
+    "plt.plot([1.7,1.7], [0,1500], color='red')\n",
+    "plt.xlabel(\"Fitted gain in acceptance test\")\n",
+    "plt.ylabel(\"Counts\")\n",
+    "plt.title(\"Mean: {}, std_dev: {}\".format( round(df_gains[0].mean(),3), round(df_gains[0].std(),3) ) )\n"
+   ]
   }
  ],
  "metadata": {
-- 
GitLab