Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
km3mon
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Carlo Guidi
km3mon
Compare revisions
master to 8fe3435cb5b30d909fd46d9fcafb23a0ade55bfc
Compare revisions
Changes are shown as if the
source
revision was being merged into the
target
revision.
Learn more about comparing revisions.
Source
cguidi/km3mon
Select target project
No results found
8fe3435cb5b30d909fd46d9fcafb23a0ade55bfc
Select Git revision
Swap
Target
km3py/km3mon
Select target project
km3py/km3mon
cguidi/km3mon
2 results
master
Select Git revision
Show changes
Only incoming changes from source
Include changes to target since source was created
Compare
Commits on Source (3)
Add acoustics monitoring
· e13112d0
Carlo Guidi
authored
5 years ago
e13112d0
Apply suggestion to scripts/acoustics.py
· e9463756
Carlo Guidi
authored
5 years ago
e9463756
Update acoustics.py
· 8fe3435c
Carlo Guidi
authored
5 years ago
8fe3435c
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/acoustics.py
+285
-0
285 additions, 0 deletions
scripts/acoustics.py
with
285 additions
and
0 deletions
scripts/acoustics.py
0 → 100644
View file @
8fe3435c
#!/usr/bin/env python
# coding=utf-8
"""
Online Acoustic Monitoring
Usage:
acoustics.py [options]
acoustics.py (-h | --help)
Options:
-d DET_ID Detector ID
-o PLOT_DIR The directory to save the plot
-h --help Show this screen.
"""
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib
from
matplotlib
import
colors
import
km3pipe
as
kp
import
time
import
os
from
datetime
import
datetime
import
argparse
parser
=
argparse
.
ArgumentParser
(
description
=
'
Online_monitoring
'
)
parser
.
add_argument
(
'
-d
'
,
dest
=
'
det_id
'
,
type
=
str
,
nargs
=
1
,
required
=
True
,
help
=
'
The detector ID (e.g. D_ORCA005)
'
)
parser
.
add_argument
(
'
-o
'
,
dest
=
'
plot_dir
'
,
type
=
str
,
nargs
=
1
,
required
=
True
,
help
=
'
Directory in which the plot is saved
'
)
args
=
parser
.
parse_args
()
detid
=
args
.
det_id
[
0
]
directory
=
args
.
plot_dir
[
0
]
def
diff
(
first
,
second
):
second
=
set
(
second
)
return
[
item
for
item
in
first
if
item
not
in
second
]
#print(time.time())
db
=
kp
.
db
.
DBManager
()
sds
=
kp
.
db
.
StreamDS
()
table
=
db
.
run_table
(
detid
)
AB
=
[
12
,
14
,
16
]
# Acoustic Beacons
DOM
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
]
# DOMs
DU
=
[
1
,
2
,
3
,
4
,
5
]
# DUs
#AB=[16] # Acoustic Beacons
#DOM=[7] #
#DU=[3] # DUs
check
=
True
while
check
==
True
:
minrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
ind
,
=
np
.
where
((
table
[
"
RUN
"
]
==
minrun
))
mintime1
=
table
[
'
UNIXSTARTTIME
'
][
ind
]
mintime
=
mintime1
.
values
maxrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
now
=
time
.
time
()
if
(
now
-
mintime
/
1000
)
<
600
:
minrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
-
1
print
(
now
)
COL
=
[]
for
i
in
DU
:
DUx
=
[]
for
j
in
AB
:
for
k
in
DOM
:
try
:
macaddress
=
db
.
doms
.
via_omkey
((
i
,
k
),
detid
).
dom_id
toas_all
=
sds
.
toashort
(
detid
=
detid
,
minrun
=
minrun
,
maxrun
=
maxrun
,
domid
=
macaddress
,
emitterid
=
j
)
# Prendere i dati basandosi sul tempo e non sul run????
QF_abdom
=
toas_all
[
"
QUALITYFACTOR
"
]
UTB_abdom
=
toas_all
[
"
UNIXTIMEBASE
"
]
TOAS_abdom
=
toas_all
[
"
TOA_S
"
]
UTB_abdom
=
UTB_abdom
.
values
up
=
np
.
where
(
UTB_abdom
>
(
now
-
600
))
down
=
np
.
where
(
UTB_abdom
<
(
now
))
intr
=
np
.
intersect1d
(
up
,
down
)
UTB_abdom
=
UTB_abdom
[
intr
]
QF_abdom
=
QF_abdom
[
intr
]
QF_abdom
=
QF_abdom
.
values
QFlist
=
QF_abdom
.
tolist
()
QFlist
.
sort
(
reverse
=
True
)
QF_max
=
max
(
QF_abdom
)
QF_max_index
=
np
.
where
(
QF_abdom
==
QF_max
)
UTB_signal_min
=
UTB_abdom
[
QF_max_index
]
-
80
UTB_signal_max
=
UTB_abdom
[
QF_max_index
]
+
80
temp1
=
np
.
where
(
UTB_abdom
>
(
UTB_signal_min
[
0
]))
temp2
=
np
.
where
(
UTB_abdom
<
(
UTB_signal_max
[
0
]))
inter
=
np
.
intersect1d
(
temp1
,
temp2
)
inter
=
inter
.
tolist
()
signal_index
=
inter
QF_abdom_index
=
np
.
where
(
QF_abdom
)
all_data_index
=
QF_abdom_index
[
0
].
tolist
()
noise_index
=
diff
(
all_data_index
,
signal_index
)
SIGNAL
=
QF_abdom
[
signal_index
]
UTB_SIGNAL
=
UTB_abdom
[
signal_index
]
NOISE
=
QF_abdom
[
noise_index
]
NOISElist
=
NOISE
.
tolist
()
NOISElist
.
sort
(
reverse
=
True
)
noise_threshold
=
max
(
NOISE
)
# First filter: 22 greatest
SIGNAL
=
SIGNAL
.
tolist
()
SIGNAL_OLD
=
np
.
array
(
SIGNAL
)
SIGNAL
.
sort
(
reverse
=
True
)
QF_first
=
SIGNAL
[
0
:
22
]
# Second filter: delete duplicates
QF_second
=
np
.
unique
(
QF_first
)
QF_second
=
QF_second
.
tolist
()
QF_second
.
sort
(
reverse
=
True
)
# Third filter: If there are more than 11 elements I will eliminate the worst
if
len
(
QF_second
)
>
11
:
QF_second
=
np
.
array
(
QF_second
)
QF_third
=
[
k
for
k
in
QF_second
if
(
np
.
where
(
QF_second
==
k
)[
0
][
0
]
<
11
)]
else
:
QF_third
=
QF_second
# Fourth filter: I remove the data if it is below the maximum noise
QF_fourth
=
[
k
for
k
in
QF_third
if
k
>
(
noise_threshold
+
(
5
*
np
.
std
(
NOISE
)))]
# Fifth filter: Check if the clicks are interspersed in the right way
# QF_fifth=[k for k in QF_fourth if (abs(k-max(QF_fourth))<abs(k-noise_threshold))]
Q
=
[]
for
q
in
np
.
arange
(
len
(
QF_fourth
)):
Q
.
append
(
np
.
where
(
SIGNAL_OLD
==
QF_fourth
[
q
])[
0
][
0
])
UTB_fourth
=
np
.
array
(
UTB_SIGNAL
.
tolist
())[
Q
]
UTB_fourth_l
=
UTB_fourth
.
tolist
()
# UTB_fourth_l.sort()
D
=
[]
for
g
in
np
.
arange
(
len
(
UTB_fourth_l
)):
if
((
np
.
mod
((
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
>
0.5
and
np
.
mod
((
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
<
4.5
)
or
(
np
.
mod
((
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
>
5
)):
D
.
append
(
g
)
for
d
in
sorted
(
D
,
reverse
=
True
):
del
QF_fourth
[
d
]
QF_fifth
=
QF_fourth
QF_OK
=
QF_fifth
# print(QF_OK)
NUM
=
len
(
QF_OK
)
print
(
NUM
)
if
(
NUM
>
7
):
DUx
.
append
(
1.5
)
elif
(
NUM
<
8
and
NUM
>
3
):
DUx
.
append
(
0.5
)
elif
(
NUM
<
4
and
NUM
>
0
):
DUx
.
append
(
-
0.5
)
elif
(
NUM
==
0
):
DUx
.
append
(
-
1.5
)
except
:
stop
=
[]
DUx
.
append
(
-
1.5
)
COL
.
append
(
DUx
)
fig
=
plt
.
figure
()
ax
=
fig
.
add_subplot
(
111
)
dom
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
]
l
=
len
(
dom
)
du1AB1
=
0.9
*
np
.
ones
(
l
)
du1AB2
=
1
*
np
.
ones
(
l
)
du1AB3
=
1.1
*
np
.
ones
(
l
)
du2AB1
=
1.9
*
np
.
ones
(
l
)
du2AB2
=
2
*
np
.
ones
(
l
)
du2AB3
=
2.1
*
np
.
ones
(
l
)
du3AB1
=
2.9
*
np
.
ones
(
l
)
du3AB2
=
3
*
np
.
ones
(
l
)
du3AB3
=
3.1
*
np
.
ones
(
l
)
du4AB1
=
3.9
*
np
.
ones
(
l
)
du4AB2
=
4
*
np
.
ones
(
l
)
du4AB3
=
4.1
*
np
.
ones
(
l
)
du5AB1
=
4.9
*
np
.
ones
(
l
)
du5AB2
=
5
*
np
.
ones
(
l
)
du5AB3
=
5.1
*
np
.
ones
(
l
)
DU1
=
np
.
array
(
COL
[
0
])
DU2
=
np
.
array
(
COL
[
1
])
DU3
=
np
.
array
(
COL
[
2
])
DU4
=
np
.
array
(
COL
[
3
])
DU5
=
np
.
array
(
COL
[
4
])
ind
=
np
.
where
(
DU2
<
1000
)
iAB1
=
np
.
where
(
ind
[
0
]
<
l
)
iAB2_up
=
np
.
where
(
ind
[
0
]
>
(
l
-
1
))
iAB2_down
=
np
.
where
(
ind
[
0
]
<
2
*
l
)
iAB2
=
np
.
intersect1d
(
iAB2_up
,
iAB2_down
)
iAB3
=
np
.
where
(
ind
[
0
]
>
(
2
*
l
-
1
))
colorsList
=
[(
0
,
0
,
0
),(
1
,
0.3
,
0
),(
1
,
1
,
0
),(
0.2
,
0.9
,
0
)]
CustomCmap
=
matplotlib
.
colors
.
ListedColormap
(
colorsList
)
bounds
=
[
-
2
,
-
1
,
0
,
1
,
2
]
norma
=
colors
.
BoundaryNorm
(
bounds
,
CustomCmap
.
N
)
color
=
ax
.
scatter
(
du1AB1
,
dom
,
s
=
20
,
c
=
DU1
[
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du1AB2
,
dom
,
s
=
20
,
c
=
DU1
[
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du1AB3
,
dom
,
s
=
20
,
c
=
DU1
[
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du2AB1
,
dom
,
s
=
20
,
c
=
DU2
[
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du2AB2
,
dom
,
s
=
20
,
c
=
DU2
[
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du2AB3
,
dom
,
s
=
20
,
c
=
DU2
[
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du3AB1
,
dom
,
s
=
20
,
c
=
DU3
[
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du3AB2
,
dom
,
s
=
20
,
c
=
DU3
[
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du3AB3
,
dom
,
s
=
20
,
c
=
DU3
[
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du4AB1
,
dom
,
s
=
20
,
c
=
DU4
[
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du4AB2
,
dom
,
s
=
20
,
c
=
DU4
[
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du4AB3
,
dom
,
s
=
20
,
c
=
DU4
[
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du5AB1
,
dom
,
s
=
20
,
c
=
DU5
[
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du5AB2
,
dom
,
s
=
20
,
c
=
DU5
[
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
color
=
ax
.
scatter
(
du5AB3
,
dom
,
s
=
20
,
c
=
DU5
[
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
);
cbar
=
plt
.
colorbar
(
color
)
cbar
.
ax
.
get_yaxis
().
set_ticks
([])
for
j
,
lab
in
enumerate
([
'
$0. pings$
'
,
'
$1-3 pings$
'
,
'
$4-7 pings$
'
,
'
$>7. pings$
'
]):
cbar
.
ax
.
text
(
3.5
,
(
2
*
j
+
1
)
/
8.0
,
lab
,
ha
=
'
center
'
,
va
=
'
center
'
)
cbar
.
ax
.
get_yaxis
().
labelpad
=
18
matplotlib
.
pyplot
.
xticks
(
np
.
arange
(
1
,
6
,
step
=
1
))
matplotlib
.
pyplot
.
yticks
(
np
.
arange
(
0
,
19
,
step
=
1
))
matplotlib
.
pyplot
.
grid
(
color
=
'
k
'
,
linestyle
=
'
-
'
,
linewidth
=
0.2
)
ax
.
set_xlabel
(
'
DUs
'
,
fontsize
=
18
)
ax
.
set_ylabel
(
'
Floors
'
,
fontsize
=
18
)
ts
=
now
+
3600
DATE
=
datetime
.
utcfromtimestamp
(
ts
).
strftime
(
'
%Y-%m-%d %H:%M:%S
'
)
ax
.
set_title
(
r
'
%.16s Detection of the pings emitted by autonomous beacons
'
%
DATE
,
fontsize
=
10
)
# plt.show()
my_path
=
os
.
path
.
abspath
(
directory
)
my_file
=
'
Online_Acoustic_Monitoring.png
'
fig
.
savefig
(
os
.
path
.
join
(
my_path
,
my_file
))
print
(
time
.
time
())
check
=
False
check_time
=
time
.
time
()
-
now
print
(
check_time
)
time
.
sleep
(
abs
(
600
-
check_time
))
check
=
True
This diff is collapsed.
Click to expand it.