Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • common/km3net-dataformat-specifications
1 result
Show changes
Commits on Source (2)
......@@ -2,12 +2,19 @@
\usepackage{graphicx}
\usepackage{color}
\usepackage{hyperref}
\usepackage[hidelinks]{hyperref}
\hypersetup{
colorlinks = true, % Colours links instead of ugly boxes
urlcolor = blue, % Colour for external hyperlinks
linkcolor = blue, % Colour of internal links
citecolor = red % Colour of citations
}
\usepackage{alertmessage}
\usepackage{listings}
% \usepackage{forest}
\usepackage{dirtree}
\usepackage{bytefield}
\usepackage[separate-uncertainty=true,multi-part-units=single]{siunitx}
\usepackage{xcolor}
\definecolor{codegreen}{rgb}{0,0.6,0}
......@@ -126,6 +133,11 @@ Example for DU-2 (ARCA-DU1) at its test in the dark room (detector-ID 5) this is
\subsection{Version 2 (April 2016)}
The first version of the detector format does include global position variables
that are not well defined. In addition, no validity time span is defined that is
e.g. necessary for the detector deforming due to the sea current. Therefore, a
new data format is proposed – with main changes in the header section.
\begin{lstlisting}
global_det_id format_version\n
UTC_validity_from UTC_validity_to \n
......@@ -139,18 +151,13 @@ dom_id line_id floor_id npmts\n
#repeat for each dom
\end{lstlisting}
The main additions in the second version of the DETX format are the format
version, the validity time range and the UTM coordinates of the detector.
\begin{fieldspecs}
\datafield[int]{global_det_id}{The global detector identifier. Negative values between -100 and 0 are indicating simulation detectors. It is 1 for the PPM-DU and follows the KM3NeT serial number for all detectors in testing and the sea.}
\datafield[string]{format_version}{The version of the data format with the following format: (v|V)[1-9][0-9]+}
\datafield[float with 0.1 precision, min: 0.0]{UTC_validity_from}{The begin of the valid time range for the detector description in seconds.}
\datafield[float with 0.1 precision, max: 999999999999.9]{UTC_validity_to}{The end of the valid time range for the detector description in seconds.}
\datafield[string]{UTM_ref_grid}{The reference ellipsoid of the UTM grid of the detector, e.g. "UTM WGS84 33N"}
\datafield[int]{UTM_ref_easting}{Easting of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_northing}{Northing of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_ref_z}{z-position of the reference point in the UTM grid.}
\datafield[string]{UTM_ref_grid}{The reference grid, composed of the string \verb|UTM|, the reference ellipsoid and the UTM grid of the detector, e.g. "UTM WGS84 33N" for the ARCA site in Italy.}
\datafield[int]{UTM_ref_easting, UTM_ref_northing, UTM_ref_z}{Easting, Northing and z-position of the reference point in the UTM grid. See Section~\ref{section:utm_grid} for more information.}
\datafield[unsigned int]{ndoms}{Number of optical modules, can be 0, which automatically means the ``end of the file''.}
\datafield[int]{dom_id}{The unique optical module ID. For real detectors, the number is part of the product number and is usually the last 9 digits of the CLBs MAC address.}
\datafield[int]{line_id}{The string number.}
......@@ -165,6 +172,18 @@ version, the validity time range and the UTM coordinates of the detector.
\alertinfo{Within each DOM section, the PMTs are listed according to an ascending order of their DAQ channel ID, starting at 0.}
\subsubsection{UTM Grid}
\label{section:utm_grid}
The KM3NeT coordinate system is proposed in \verb|KM3NeT_SOFT_WD_2016_002|, the reference
point for the ARCA site is defined within the building block one with:
\begin{itemize}
\item UTM reference ellipsoid: WGS84
\item UTM grid zone: 33N (where N is for North\footnote{A note of caution: The method used here simply adds N or S following the zone number to indicate Northern or Southern hemisphere. See \url{https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system\#Notation} for a general discussion on the grid zone notation})
\item The elevation (\verb|UTM_ref_z|) above is the orthometric height calculated relative to the mean sea surface (MSS) as defined by \verb|DTU132|. The see \verb|WGS84| geoid height can be deduced by adding the \verb|EGM96| Geoid height which is \SI{30.9(0.1)}{\meter} at the reference point, as provided by the \verb|NGA EGM96 Geoid Calculator|; the orthometric height of the seafloor at that point is \SI{-3454(1)}{\meter} and the mean for the ARCA building block is \SI{-3452}{\meter}.
\end{itemize}
\subsubsection*{Example}
Example for ARCA28 (D0ARCA028, detector-ID 160):
......@@ -211,10 +230,8 @@ for every PMT and comment lines at the beginning of the file to store meta data.
\datafield[string]{format_version}{The version of the data format with the following format: (v|V)[1-9][0-9]+}
\datafield[float with 0.1 precision, min: 0.0]{UTC_validity_from}{The begin of the valid time range for the detector description in seconds.}
\datafield[float with 0.1 precision, max: 999999999999.9]{UTC_validity_to}{The end of the valid time range for the detector description in seconds.}
\datafield[string]{UTM_ref_grid}{The reference ellipsoid of the UTM grid of the detector, e.g. "UTM WGS84 33N"}
\datafield[int]{UTM_ref_easting}{Easting of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_northing}{Northing of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_ref_z}{z-position of the reference point in the UTM grid.}
\datafield[string]{UTM_ref_grid}{The reference grid, composed of the string \verb|UTM|, the reference ellipsoid and the UTM grid of the detector, e.g. "UTM WGS84 33N" for the ARCA site in Italy.}
\datafield[int]{UTM_ref_easting, UTM_ref_northing, UTM_ref_z}{Easting, Northing and z-position of the reference point in the UTM grid. See Section~\ref{section:utm_grid} for more information.}
\datafield[unsigned int]{ndoms}{Number of optical modules, can be 0, which automatically means the ``end of the file''.}
\datafield[int]{dom_id}{The unique optical module ID. For real detectors, the number is part of the product number and is usually the last 9 digits of the CLBs MAC address.}
\datafield[int]{line_id}{The string number.}
......@@ -275,10 +292,8 @@ for defining non-optical modules (like base modules).
\datafield[string]{format_version}{The version of the data format with the following format: (v|V)[1-9][0-9]+}
\datafield[float with 0.1 precision, min: 0.0]{UTC_validity_from}{The begin of the valid time range for the detector description in seconds.}
\datafield[float with 0.1 precision, max: 999999999999.9]{UTC_validity_to}{The end of the valid time range for the detector description in seconds.}
\datafield[string]{UTM_ref_grid}{The reference ellipsoid of the UTM grid of the detector, e.g. "UTM WGS84 33N"}
\datafield[int]{UTM_ref_easting}{Easting of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_northing}{Northing of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_ref_z}{z-position of the reference point in the UTM grid.}
\datafield[string]{UTM_ref_grid}{The reference grid, composed of the string \verb|UTM|, the reference ellipsoid and the UTM grid of the detector, e.g. "UTM WGS84 33N" for the ARCA site in Italy.}
\datafield[int]{UTM_ref_easting, UTM_ref_northing, UTM_ref_z}{Easting, Northing and z-position of the reference point in the UTM grid. See Section~\ref{section:utm_grid} for more information.}
\datafield[unsigned int]{nmodules}{Number of optical modules, can be 0, which automatically means the ``end of the file''.}
\datafield[int]{module_id}{The unique optical module ID. For real detectors, the number is part of the product number and is usually the last 9 digits of the CLBs MAC address.}
\datafield[int]{line_id}{The string number.}
......@@ -343,10 +358,8 @@ The main additions in the fifth version of the DETX format is the COMPONENTESTAT
\datafield[string]{format_version}{The version of the data format with the following format: (v|V)[1-9][0-9]+}
\datafield[float with 0.1 precision, min: 0.0]{UTC_validity_from}{The begin of the valid time range for the detector description in seconds.}
\datafield[float with 0.1 precision, max: 999999999999.9]{UTC_validity_to}{The end of the valid time range for the detector description in seconds.}
\datafield[string]{UTM_ref_grid}{The reference ellipsoid of the UTM grid of the detector, e.g. "UTM WGS84 33N".}
\datafield[int]{UTM_ref_easting}{Easting of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_northing}{Northing of the reference point in the UTM grid.}
\datafield[int]{UTM_ref_ref_z}{z-position of the reference point in the UTM grid.}
\datafield[string]{UTM_ref_grid}{The reference grid, composed of the string \verb|UTM|, the reference ellipsoid and the UTM grid of the detector, e.g. "UTM WGS84 33N" for the ARCA site in Italy.}
\datafield[int]{UTM_ref_easting, UTM_ref_northing, UTM_ref_z}{Easting, Northing and z-position of the reference point in the UTM grid. See Section~\ref{section:utm_grid} for more information.}
\datafield[unsigned int]{nmodules}{Number of optical modules, can be 0, which automatically means the ``end of the file''.}
\datafield[int]{module_id}{The unique module ID. For real detectors, the number is part of the product number and is usually the last 9 digits of the CLBs MAC address.}
\datafield[int]{line_id}{The string number.}
......