Skip to content
Snippets Groups Projects
plot_offline_events.py 3.18 KiB
Newer Older
Zineb Aly's avatar
Zineb Aly committed
"""
Reading Offline events
======================

The following example shows how to access events data in an offline ROOT file, which is
written by aanet software.

Note: the offline file used here has MC offline data and was intentionaly reduced
to 10 events.
"""
Tamas Gal's avatar
Tamas Gal committed

Zineb Aly's avatar
Zineb Aly committed
import km3io as ki
Tamas Gal's avatar
Tamas Gal committed
from km3net_testdata import data_path
Zineb Aly's avatar
Zineb Aly committed

#####################################################
# First, pass a filename to the `OfflineReader` class to open the file.
# Note that only some meta information is read into memory.

Tamas Gal's avatar
Tamas Gal committed
r = ki.OfflineReader(data_path("offline/numucc.root"))
Zineb Aly's avatar
Zineb Aly committed


#####################################################
# Accessing the file header
# -------------------------
Tamas Gal's avatar
Tamas Gal committed
# Note that not all file headers are supported, so don't be surprised if
Zineb Aly's avatar
Zineb Aly committed
# nothing is returned when the file header is called (this can happen if your file
# was produced with old versions of aanet).

h = r.header
print(h)


#####################################################
# Accessing the events data
# -------------------------
# Note that not all data is loaded in memory (again), so printing
# events will only return how many events were found in the file.

print(r.events)


#####################################################
# to explore the events keys:

keys = r.events.keys()
print(keys)

#####################################################
# to access the number of hits associated with each event:

n_hits = r.events.n_hits
print(n_hits)

#####################################################
# to access the number of tracks associated with each event:

n_tracks = r.events.n_tracks
print(n_tracks)

#####################################################
# to access the number of mc hits associated with each event:

n_mc_hits = r.events.n_mc_hits
print(n_mc_hits)

#####################################################
# to access the number of mc tracks associated with each event:

n_mc_tracks = r.events.n_mc_tracks
print(n_mc_tracks)

#####################################################
# to access the overlays:

overlays = r.events.overlays
print(overlays)

#####################################################
# That's it! you can access any key of your interest in the events
# keys in the exact same way.


#####################################################
# item selection in events data
# -----------------------------
# events can be selected as you would select an item from a numpy array.
# for example, to select the mc_hits in event 0:

print(r.events[0].mc_hits)

#####################################################
# or:

print(r.events.mc_hits[0])


#####################################################
# slicing of events
# -----------------
# you can select a slice of events data. For example, to select the number
# of mc hits in the first 5 events:

print(r.events.n_mc_hits[0:5])

#####################################################
# or:

print(r.events[0:5].n_mc_hits)


#####################################################
# you can apply masks to events data as you would do with numpy arrays.
# For example, to select the number of hits higher than 50:

mask = r.events.n_mc_hits > 50

print(r.events.n_mc_hits[mask])

#####################################################
# or:

print(r.events.n_mc_tracks[mask])