Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
km3io
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
km3py
km3io
Commits
56997d55
Commit
56997d55
authored
5 years ago
by
Tamas Gal
Browse files
Options
Downloads
Patches
Plain Diff
Update DAQ data docs
parent
b2f11999
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!12
Update DAQ data docs
Pipeline
#8366
passed with warnings
5 years ago
Stage: test
Stage: coverage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
README.rst
+104
-10
104 additions, 10 deletions
README.rst
with
104 additions
and
10 deletions
README.rst
+
104
−
10
View file @
56997d55
...
...
@@ -92,9 +92,11 @@ A jagged array, is a 2+ dimentional array with different arrays lengths. In othe
# <JaggedArray [[102 102 102 ... 11517 11518 11518] [] [101 101 102 ... 11518 11518 11518] ... [101 101 102 ... 11516 11516 11517] [] [101 101 101 ... 11517 11517 11518]] at 0x7f74b0ef8810>
Overview of
daq
files
Overview of
DAQ
files
"""""""""""""""""""""
# info needed here
DAQ files, or also called online files, are written by the DataWriter and
contain events, timeslics and summary slices.
Overview of offline files
"""""""""""""""""""""""""
...
...
@@ -104,29 +106,121 @@ Overview of offline files
DAQ files reader
----------------
# an update is needed here?
Currently only events (the ``KM3NET_EVENT`` tree) are supported but timeslices and summaryslices will be implemented very soon.
``km3io`` is able to read events, summary slices and timeslices (except the L0
slices, which is work in progress).
Let's have a look at some ORCA data (``KM3NeT_00000044_00005404.root``)
Reading Events
~~~~~~~~~~~~~~
To get a lazy ragged array of the events:
.. code-block:: python3
import km3io
as ki
events = ki
.DAQReader("KM3NeT_00000044_00005404.root")
.events
import km3io
f = km3io
.DAQReader("KM3NeT_00000044_00005404.root")
That's it! Now let's have a look at the hits data:
That's it, we created an object which gives access to all the events, but the
relevant data is still not loaded into the memory (lazy access)!
Now let's have a look at the hits data:
.. code-block:: python3
>>> events
>>>
f.
events
Number of events: 17023
>>> events[23].snapshot_hits.tot
>>>
f.
events[23].snapshot_hits.tot
array([28, 22, 17, 29, 5, 27, 24, 26, 21, 28, 26, 21, 26, 24, 17, 28, 23,29, 27, 24, 23, 26, 29, 25, 18, 28, 24, 28, 26, 20, 25, 31, 28, 23, 26, 21, 30, 33, 27, 16, 23, 24, 19, 24, 27, 22, 23, 21, 25, 16, 28, 22, 22, 29, 24, 29, 24, 24, 25, 25, 21, 31, 26, 28, 30, 42, 28], dtype=uint8)
The resulting arrays are numpy arrays.
Reading SummarySlices
~~~~~~~~~~~~~~~~~~~~~
The following example shows how to access summary slices, in particular the DOM
IDs of the slice with the index ``23``:
.. code-block:: python3
>>> f.summaryslices
<km3io.daq.SummmarySlices at 0x7effcc0e52b0>
>>> f.summaryslices.slices[23].dom_id
array([806451572, 806455814, 806465101, 806483369, 806487219, 806487226,
806487231, 808432835, 808435278, 808447180, 808447186, 808451904,
808451907, 808469129, 808472260, 808472265, 808488895, 808488990,
808489014, 808489117, 808493910, 808946818, 808949744, 808951460,
808956908, 808959411, 808961448, 808961480, 808961504, 808961655,
808964815, 808964852, 808964883, 808964908, 808969848, 808969857,
808972593, 808972598, 808972698, 808974758, 808974773, 808974811,
808974972, 808976377, 808979567, 808979721, 808979729, 808981510,
808981523, 808981672, 808981812, 808981864, 808982005, 808982018,
808982041, 808982066, 808982077, 808982547, 808984711, 808996773,
808997793, 809006037, 809007627, 809503416, 809521500, 809524432,
809526097, 809544058, 809544061], dtype=int32)
The ``.dtype`` attribute (or in general, <TAB> completion) is useful to find out
more about the field structure:
.. code-block:: python3
>>> f.summaryslices.headers.dtype
dtype([(' cnt', '<u4'), (' vers', '<u2'), (' cnt2', '<u4'), (' vers2',
'<u2'), (' cnt3', '<u4'), (' vers3', '<u2'), ('detector_id', '<i4'), ('run',
'<i4'), ('frame_index', '<i4'), (' cnt4', '<u4'), (' vers4', '<u2'),
('UTC_seconds', '<u4'), ('UTC_16nanosecondcycles', '<u4')])
>>> f.summaryslices.headers.frame_index
<ChunkedArray [162 163 173 ... 36001 36002 36003] at 0x7effccd4af10>
The resulting array is a ``ChunkedArray`` which is an extended version of a
numpy array and behaves like one.
Reading Timeslices
~~~~~~~~~~~~~~~~~~
Timeslices are split into different streams since 2017 and ``km3io`` currently
supports everything except L0, i.e. L1, L2 and SN streams. The API is
work-in-progress and will be improved in future, however, all the data is
already accessible (although in ugly ways ;-)
To access the timeslice data:
.. code-block:: python3
>>> f.timeslices
Available timeslice streams: L1, SN
>>> f.timeslices.stream("L1", 24).frames
{806451572: <Table [<Row 1577843> <Row 1577844> ... <Row 1578147>],
806455814: <Table [<Row 1578148> <Row 1578149> ... <Row 1579446>],
806465101: <Table [<Row 1579447> <Row 1579448> ... <Row 1580885>],
...
}
The frames are represented by a dictionary where the key is the ``DOM ID`` and
the value a numpy array of hits, with the usual fields to access the PMT
channel, time and ToT:
.. code-block:: python3
>>> f.timeslices.stream("L1", 24).frames[806451572].dtype
dtype([('pmt', 'u1'), ('tdc', '<u4'), ('tot', 'u1')])
>>> f.timeslices.stream("L1", 24).frames[806451572].tot
array([29, 21, 8, 29, 22, 20, 1, 37, 11, 22, 11, 22, 12, 20, 29, 94, 26,
26, 18, 16, 13, 22, 6, 29, 24, 30, 14, 26, 12, 23, 4, 25, 6, 27,
5, 13, 21, 28, 30, 4, 25, 10, 5, 6, 5, 17, 4, 27, 24, 25, 27,
28, 32, 6, 3, 15, 3, 20, 33, 30, 30, 20, 28, 6, 7, 3, 14, 12,
25, 27, 26, 25, 22, 21, 23, 6, 20, 21, 4, 4, 10, 24, 29, 12, 30,
5, 3, 24, 15, 14, 25, 5, 27, 23, 26, 4, 28, 15, 34, 22, 4, 29,
24, 26, 29, 23, 25, 28, 14, 31, 27, 26, 27, 28, 23, 54, 4, 25, 11,
28, 25, 24, 7, 27, 28, 28, 18, 3, 13, 14, 38, 28, 4, 21, 16, 16,
4, 21, 26, 21, 28, 64, 21, 1, 24, 21, 26, 26, 25, 4, 28, 11, 31,
10, 24, 24, 28, 10, 6, 4, 20, 26, 18, 5, 18, 24, 5, 27, 23, 20,
29, 20, 6, 18, 5, 24, 17, 28, 24, 15, 26, 27, 25, 9, 3, 18, 3,
34, 29, 10, 25, 30, 28, 19, 26, 34, 27, 14, 17, 15, 26, 8, 19, 5,
27, 13, 5, 27, 46, 3, 25, 13, 30, 9, 21, 12, 1, 32, 25, 8, 30,
4, 24, 11, 3, 11, 27, 5, 13, 5, 16, 18, 3, 22, 10, 7, 32, 29,
15, 20, 18, 16, 27, 5, 22, 4, 33, 5, 29, 24, 30, 7, 7, 25, 33,
7, 20, 8, 30, 4, 4, 6, 26, 8, 24, 22, 12, 6, 3, 21, 28, 11,
24, 27, 27, 6, 29, 5, 18, 11, 26, 5, 19, 32, 25, 4, 20, 35, 30,
5, 3, 26, 30, 23, 28, 6, 25, 25, 5, 45, 23, 18, 29, 28, 23],
dtype=uint8)
Offline files reader
--------------------
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment