Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
km3mon
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
km3py
km3mon
Commits
f18abb6b
Commit
f18abb6b
authored
5 years ago
by
Tamas Gal
Browse files
Options
Downloads
Plain Diff
Merge branch '36-integrate-online-acoustic-monitoring-script-for-orca-site-3' into 'master'
Resolve "Integrate Online Acoustic Monitoring script for ORCA site" Closes
#36
See merge request
!8
parents
7f45dceb
fafd201f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!8
Resolve "Integrate Online Acoustic Monitoring script for ORCA site"
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
scripts/acoustics.py
+393
-0
393 additions, 0 deletions
scripts/acoustics.py
supervisord_template.conf
+6
-1
6 additions, 1 deletion
supervisord_template.conf
with
399 additions
and
1 deletion
scripts/acoustics.py
0 → 100755
+
393
−
0
View file @
f18abb6b
#!/usr/bin/env python
# coding=utf-8
"""
Online Acoustic Monitoring
Usage:
acoustics.py [options]
acoustics.py (-h | --help)
Options:
-d DET_ID Detector ID.
-o PLOT_DIR The directory to save the plot [default: plots].
-h --help Show this screen.
"""
from
datetime
import
datetime
import
os
import
time
import
matplotlib
matplotlib
.
use
(
"
Agg
"
)
import
matplotlib.pyplot
as
plt
from
matplotlib
import
colors
import
numpy
as
np
import
km3pipe
as
kp
from
docopt
import
docopt
def
diff
(
first
,
second
):
second
=
set
(
second
)
return
[
item
for
item
in
first
if
item
not
in
second
]
def
duplicates
(
lst
,
item
):
return
[
i
for
i
,
x
in
enumerate
(
lst
)
if
x
==
item
]
args
=
docopt
(
__doc__
)
detid
=
args
[
'
-d
'
]
directory
=
args
[
'
-o
'
]
db
=
kp
.
db
.
DBManager
()
sds
=
kp
.
db
.
StreamDS
()
ACOUSTIC_BEACONS
=
[
12
,
14
,
16
]
N_DOMS
=
18
N_ABS
=
3
DOMS
=
range
(
N_DOMS
+
1
)
DUS
=
kp
.
hardware
.
Detector
(
det_id
=
detid
).
dus
DUS_cycle
=
list
(
np
.
arange
(
max
(
DUS
))
+
1
)
TIT
=
600
# Time Interval between Trains of acoustic pulses)
SSW
=
160
# Signal Security Window (Window size with signal)
clbmap
=
kp
.
db
.
CLBMap
(
detid
)
check
=
True
while
check
:
minrun
=
None
while
minrun
is
None
:
try
:
table
=
db
.
run_table
(
detid
)
minrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
ind
,
=
np
.
where
((
table
[
"
RUN
"
]
==
minrun
))
mintime1
=
table
[
'
UNIXSTARTTIME
'
][
ind
]
mintime
=
mintime1
.
values
maxrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
now
=
time
.
time
()
now
=
now
-
600
if
(
now
-
mintime
/
1000
)
<
TIT
:
minrun
=
table
[
"
RUN
"
][
len
(
table
[
"
RUN
"
])
-
1
]
-
1
print
(
now
)
except
:
pass
N_Pulses_Indicator
=
[
]
# Matrix indicating how many pulses each piezo reveals
for
du
in
DUS_cycle
:
N_Pulses_Indicator_DU
=
[
]
# Array indicating for each DU how many pulses each piezo reveals.
for
dom
in
DOMS
:
UTB_MIN
=
[]
QF_MAX
=
[]
for
ab
in
ACOUSTIC_BEACONS
:
try
:
domID
=
clbmap
.
omkeys
[(
du
,
dom
)].
dom_id
except
(
KeyError
,
AttributeError
):
N_Pulses_Indicator_DU
.
append
(
-
1.5
)
continue
try
:
toas_all
=
sds
.
toashort
(
detid
=
detid
,
minrun
=
minrun
,
maxrun
=
maxrun
,
domid
=
domID
,
emitterid
=
ab
)
QF_abdom
=
toas_all
[
"
QUALITYFACTOR
"
]
UTB_abdom
=
toas_all
[
"
UNIXTIMEBASE
"
]
TOAS_abdom
=
toas_all
[
"
TOA_S
"
]
UTB_abdom
=
UTB_abdom
.
values
up
=
np
.
where
(
UTB_abdom
>
(
now
-
TIT
))
down
=
np
.
where
(
UTB_abdom
<
(
now
))
intr
=
np
.
intersect1d
(
up
,
down
)
UTB_abdom
=
UTB_abdom
[
intr
]
QF_abdom
=
QF_abdom
[
intr
]
QF_abdom
=
QF_abdom
.
values
QFlist
=
QF_abdom
.
tolist
()
QFlist
.
sort
(
reverse
=
True
)
QF_max
=
max
(
QF_abdom
)
QF_max_index
=
np
.
where
(
QF_abdom
==
QF_max
)
UTB_signal_min
=
UTB_abdom
[
QF_max_index
[
0
][
0
]]
-
SSW
/
2
UTB_signal_max
=
UTB_abdom
[
QF_max_index
[
0
][
0
]]
+
SSW
/
2
temp1
=
np
.
where
(
UTB_abdom
>
(
UTB_signal_min
))
temp2
=
np
.
where
(
UTB_abdom
<
(
UTB_signal_max
))
inter
=
np
.
intersect1d
(
temp1
,
temp2
)
inter
=
inter
.
tolist
()
signal_index
=
inter
# Define the signal index if the the pings are splitted in two parts inside the window
if
UTB_signal_min
<
(
now
-
TIT
):
temp1
=
np
.
where
(
UTB_abdom
>
(
now
-
TIT
))
temp2
=
np
.
where
(
UTB_abdom
<
(
UTB_signal_max
))
inter1
=
np
.
intersect1d
(
temp1
,
temp2
)
inter1
=
inter1
.
tolist
()
temp11
=
np
.
where
(
UTB_abdom
<
(
now
))
temp22
=
np
.
where
(
UTB_abdom
>
(
now
-
SSW
/
2
))
inter2
=
np
.
intersect1d
(
temp11
,
temp22
)
inter2
=
inter2
.
tolist
()
inter
=
np
.
union1d
(
inter1
,
inter2
)
inter
=
inter
.
tolist
()
signal_index
=
inter
signal_index
=
np
.
array
(
signal_index
)
signal_index
=
signal_index
.
astype
(
int
)
signal_index
=
signal_index
.
tolist
()
if
UTB_signal_max
>
now
:
temp1
=
np
.
where
(
UTB_abdom
<
(
now
))
temp2
=
np
.
where
(
UTB_abdom
>
(
UTB_signal_min
))
inter1
=
np
.
intersect1d
(
temp1
,
temp2
)
inter1
=
inter1
.
tolist
()
temp11
=
np
.
where
(
UTB_abdom
>
((
now
-
TIT
)))
temp22
=
np
.
where
(
UTB_abdom
<
((
now
-
TIT
)
+
SSW
/
2
))
inter2
=
np
.
intersect1d
(
temp11
,
temp22
)
inter2
=
inter2
.
tolist
()
inter
=
np
.
union1d
(
inter1
,
inter2
)
inter
=
inter
.
tolist
()
signal_index
=
inter
signal_index
=
np
.
array
(
signal_index
)
signal_index
=
signal_index
.
astype
(
int
)
signal_index
=
signal_index
.
tolist
()
QF_abdom_index
=
np
.
where
(
QF_abdom
)
all_data_index
=
QF_abdom_index
[
0
].
tolist
()
noise_index
=
diff
(
all_data_index
,
signal_index
)
SIGNAL
=
QF_abdom
[
signal_index
]
UTB_SIGNAL
=
UTB_abdom
[
signal_index
]
TOA_SIGNAL
=
TOAS_abdom
[
signal_index
]
NOISE
=
QF_abdom
[
noise_index
]
NOISElist
=
NOISE
.
tolist
()
NOISElist
.
sort
(
reverse
=
True
)
NOISE
=
NOISE
.
tolist
()
NOISE
.
sort
(
reverse
=
True
)
noise_threshold
=
max
(
NOISE
)
# To be sure not to take signal
# First filter: 22 greatest
Security_Number
=
22
# To be sure to take all the pulses
SIGNAL
=
SIGNAL
.
tolist
()
SIGNAL_OLD
=
np
.
array
(
SIGNAL
)
SIGNAL
.
sort
(
reverse
=
True
)
QF_first
=
SIGNAL
[
0
:
Security_Number
]
# Second filter: delete duplicates (Delete if Unixtimebase + ToA is the same)
QF_second
=
QF_first
R
=
[]
for
r
in
np
.
arange
(
len
(
QF_first
)):
R
.
append
(
np
.
where
(
SIGNAL_OLD
==
QF_first
[
r
])[
0
][
0
])
UTB_first
=
np
.
array
(
UTB_SIGNAL
.
tolist
())[
R
]
TOA_first
=
np
.
array
(
TOA_SIGNAL
.
tolist
())[
R
]
UNIX_TOA
=
UTB_first
+
TOA_first
UNIX_TOA
=
UNIX_TOA
.
tolist
()
UNIX_TOA_index
=
[]
for
x
in
set
(
UNIX_TOA
):
if
UNIX_TOA
.
count
(
x
)
>
1
:
UNIX_TOA_index
.
append
(
duplicates
(
UNIX_TOA
,
x
))
ind_del
=
[]
for
i
in
range
(
len
(
UNIX_TOA_index
)):
ind_del
.
append
(
UNIX_TOA_index
[
i
][
0
])
for
ide
in
sorted
(
ind_del
,
reverse
=
True
):
del
QF_second
[
ide
]
QF_second
.
sort
(
reverse
=
True
)
# Old second filter
# QF_second = np.unique(QF_first)
# QF_second = QF_second.tolist()
# QF_second.sort(reverse = True)
# Third filter: If there are more than 11 elements I will eliminate the worst
if
len
(
QF_second
)
>
11
:
QF_second
=
np
.
array
(
QF_second
)
QF_third
=
[
k
for
k
in
QF_second
if
(
np
.
where
(
QF_second
==
k
)[
0
][
0
]
<
11
)
]
else
:
QF_third
=
QF_second
# Fourth filter: I remove the data if it is below the maximum noise
QF_fourth
=
[
k
for
k
in
QF_third
if
k
>
(
noise_threshold
+
(
10
*
np
.
std
(
NOISE
)))
]
# Fifth filter: Check if the clicks are interspersed in the right way
QF_fifth
=
QF_fourth
Q
=
[]
for
q
in
np
.
arange
(
len
(
QF_fifth
)):
Q
.
append
(
np
.
where
(
SIGNAL_OLD
==
QF_fifth
[
q
])[
0
][
0
])
UTB_fourth
=
np
.
array
(
UTB_SIGNAL
.
tolist
())[
Q
]
UTB_fourth_l
=
UTB_fourth
.
tolist
()
D
=
[]
for
g
in
np
.
arange
(
len
(
UTB_fourth_l
)):
if
((
np
.
mod
((
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
>
2
and
np
.
mod
(
(
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
<
4
)
or
(
np
.
mod
(
(
UTB_fourth_l
[
g
]
-
UTB_fourth_l
[
0
]),
5
)
>
5
)):
D
.
append
(
g
)
for
d
in
sorted
(
D
,
reverse
=
True
):
del
QF_fifth
[
d
]
# Sixth filter:
QF_sixth
=
[
k
for
k
in
QF_fifth
if
(
abs
(
k
-
max
(
QF_fifth
))
<
abs
(
k
-
noise_threshold
))
]
QF_OK
=
QF_sixth
P
=
[]
for
p
in
np
.
arange
(
len
(
QF_OK
)):
P
.
append
(
np
.
where
(
SIGNAL_OLD
==
QF_OK
[
p
])[
0
][
0
])
UTB_OK
=
np
.
array
(
UTB_SIGNAL
.
tolist
())[
P
]
UTB_OK_l
=
UTB_OK
.
tolist
()
UTB_MIN
.
append
(
min
(
UTB_OK_l
))
max_QF
=
max
(
QF_OK
)
QF_MAX
.
append
(
max_QF
)
NUM
=
len
(
QF_OK
)
# Number of pulses
print
(
NUM
)
if
(
NUM
>
7
):
N_Pulses_Indicator_DU
.
append
(
1.5
)
elif
(
NUM
<
8
and
NUM
>
3
):
N_Pulses_Indicator_DU
.
append
(
0.5
)
elif
(
NUM
<
4
and
NUM
>
0
):
N_Pulses_Indicator_DU
.
append
(
-
0.5
)
elif
(
NUM
==
0
):
N_Pulses_Indicator_DU
.
append
(
-
1.5
)
except
(
TypeError
,
ValueError
):
# TypeError if no data found for a certain piezo, ValueError if there are zero data for a certain piezo
N_Pulses_Indicator_DU
.
append
(
-
1.5
)
# To avoid to take wrong beacon signals
dim
=
np
.
size
(
QF_MAX
)
pulse_inter
=
5.04872989654541
for
i
in
range
(
dim
-
1
):
if
(
np
.
mod
((
UTB_MIN
[
i
]
-
UTB_MIN
[
i
+
1
]),
pulse_inter
)
==
0
or
np
.
mod
(
(
UTB_MIN
[
i
]
-
UTB_MIN
[
i
+
1
]),
pulse_inter
)
>
5
):
if
QF_MAX
[
i
]
<
QF_MAX
[
i
+
1
]:
N_Pulses_Indicator_DU
[
3
*
dom
+
i
]
=
-
1.5
else
:
N_Pulses_Indicator_DU
[
3
*
dom
+
i
+
1
]
=
-
1.5
if
i
==
0
and
dim
==
3
:
if
(
np
.
mod
(
(
UTB_MIN
[
i
]
-
UTB_MIN
[
i
+
2
]),
pulse_inter
)
==
0
or
np
.
mod
(
(
UTB_MIN
[
i
]
-
UTB_MIN
[
i
+
2
]),
pulse_inter
)
>
5
):
if
QF_MAX
[
i
]
<
QF_MAX
[
i
+
2
]:
N_Pulses_Indicator_DU
[
3
*
dom
+
i
]
=
-
1.5
else
:
N_Pulses_Indicator_DU
[
3
*
dom
+
i
+
2
]
=
-
1.5
N_Pulses_Indicator
.
append
(
N_Pulses_Indicator_DU
)
fig
=
plt
.
figure
()
ax
=
fig
.
add_subplot
(
111
)
duab
=
[]
DUs
=
[]
for
du
in
DUS_cycle
:
duabdu
=
[]
duab1
=
(
du
-
0.2
)
*
np
.
ones
(
N_DOMS
+
1
)
duab2
=
(
du
)
*
np
.
ones
(
N_DOMS
+
1
)
duab3
=
(
du
+
0.2
)
*
np
.
ones
(
N_DOMS
+
1
)
duabdu
.
append
(
duab1
)
duabdu
.
append
(
duab2
)
duabdu
.
append
(
duab3
)
duab
.
append
(
duabdu
)
DUs
.
append
(
np
.
array
(
N_Pulses_Indicator
[
du
-
1
]))
iAB1
=
[]
iAB2
=
[]
iAB3
=
[]
for
i
in
DOMS
:
iAB1
.
append
(
3
*
i
)
iAB2
.
append
(
3
*
i
+
1
)
iAB3
.
append
(
3
*
i
+
2
)
colorsList
=
[(
0
,
0
,
0
),
(
1
,
0.3
,
0
),
(
1
,
1
,
0
),
(
0.2
,
0.9
,
0
)]
CustomCmap
=
matplotlib
.
colors
.
ListedColormap
(
colorsList
)
bounds
=
[
-
2
,
-
1
,
0
,
1
,
2
]
norma
=
colors
.
BoundaryNorm
(
bounds
,
CustomCmap
.
N
)
for
du
in
DUS
:
color
=
ax
.
scatter
(
duab
[
du
-
1
][
0
],
DOMS
,
s
=
20
,
c
=
DUs
[
du
-
1
][
iAB1
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
)
color
=
ax
.
scatter
(
duab
[
du
-
1
][
1
],
DOMS
,
s
=
20
,
c
=
DUs
[
du
-
1
][
iAB2
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
)
color
=
ax
.
scatter
(
duab
[
du
-
1
][
2
],
DOMS
,
s
=
20
,
c
=
DUs
[
du
-
1
][
iAB3
],
norm
=
norma
,
marker
=
'
s
'
,
cmap
=
CustomCmap
)
cbar
=
plt
.
colorbar
(
color
)
cbar
.
ax
.
get_yaxis
().
set_ticks
([])
for
j
,
lab
in
enumerate
(
[
'
$0. pings$
'
,
'
$1-3 pings$
'
,
'
$4-7 pings$
'
,
'
$>7. pings$
'
]):
cbar
.
ax
.
text
(
3.5
,
(
2
*
j
+
1
)
/
8.0
,
lab
,
ha
=
'
center
'
,
va
=
'
center
'
)
cbar
.
ax
.
get_yaxis
().
labelpad
=
18
matplotlib
.
pyplot
.
xticks
(
np
.
arange
(
1
,
max
(
DUS
)
+
1
,
step
=
1
))
matplotlib
.
pyplot
.
yticks
(
np
.
arange
(
0
,
19
,
step
=
1
))
matplotlib
.
pyplot
.
grid
(
color
=
'
k
'
,
linestyle
=
'
-
'
,
linewidth
=
0.2
)
ax
.
set_xlabel
(
'
DUs
'
,
fontsize
=
18
)
ax
.
set_ylabel
(
'
Floors
'
,
fontsize
=
18
)
ts
=
now
+
3600
DATE
=
datetime
.
utcfromtimestamp
(
ts
).
strftime
(
'
%Y-%m-%d %H:%M:%S
'
)
ax
.
set_title
(
r
'
%.16s Detection of the pings emitted by autonomous beacons
'
%
DATE
,
fontsize
=
10
)
my_path
=
os
.
path
.
abspath
(
directory
)
my_file
=
'
Online_Acoustic_Monitoring.png
'
fig
.
savefig
(
os
.
path
.
join
(
my_path
,
my_file
))
print
(
time
.
time
())
check
=
False
check_time
=
time
.
time
()
-
now
print
(
check_time
)
time
.
sleep
(
abs
(
2
*
TIT
-
check_time
))
check
=
True
This diff is collapsed.
Click to expand it.
supervisord_template.conf
+
6
−
1
View file @
f18abb6b
...
...
@@ -79,6 +79,11 @@ priority=10
stdout_logfile
=
logs
/%(
program_name
)
s
.
out
.
log
;
stdout
log
path
,
NONE
for
none
;
default
AUTO
stderr_logfile
=
logs
/%(
program_name
)
s
.
err
.
log
;
stderr
log
path
,
NONE
for
none
;
default
AUTO
[
program
:
acoustics
]
command
=
python
-
u
scripts
/
acoustics
.
py
-
d
%(
ENV_DETECTOR_ID
)
s
stdout_logfile
=
logs
/%(
program_name
)
s
.
out
.
log
;
stdout
log
path
,
NONE
for
none
;
default
AUTO
stderr_logfile
=
logs
/%(
program_name
)
s
.
err
.
log
;
stderr
log
path
,
NONE
for
none
;
default
AUTO
[
program
:
ahrs_calibration
]
command
=
python
-
u
scripts
/
ahrs_calibration
.
py
-
d
%(
ENV_DETECTOR_ID
)
s
-
p
%(
ENV_MONITORING_LIGIER_PORT
)
s
;
process_name
=%(
program_name
)
s
;
process_name
expr
(
default
%(
program_name
)
s
)
...
...
@@ -172,7 +177,7 @@ programs=weblog,msg_dumper,chatbot
priority
=
200
[
group
:
monitoring_process
]
programs
=
ahrs_calibration
,
dom_activity
,
dom_rates
,
pmt_rates
,
trigger_rates
,
triggermap
,
ztplot
,
rttc
programs
=
acoustics
,
ahrs_calibration
,
dom_activity
,
dom_rates
,
pmt_rates
,
trigger_rates
,
triggermap
,
ztplot
,
rttc
priority
=
500
[
group
:
alerts
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment