Skip to content
Snippets Groups Projects

Add acoustics monitoring

Merged Carlo Guidi requested to merge cguidi/km3mon:undefined into master
Compare and
1 file
+ 287
0
Compare changes
  • Side-by-side
  • Inline
+ 229
0
 
#!/usr/bin/env python
 
# coding=utf-8
 
"""
 
Online Acoustic Monitoring
 
 
Usage:
 
acoustics.py [options]
 
acoustics.py (-h | --help)
 
 
Options:
 
-d DET_ID Detector ID
 
-n N_DUS Number of DUs
 
-o PLOT_DIR The directory to save the plot
 
-h --help Show this screen.
 
 
"""
 
import numpy as np
 
import matplotlib.pyplot as plt
 
import time
 
import os
 
import matplotlib
 
from matplotlib import colors
 
from datetime import datetime
 
from docopt import docopt
 
import km3pipe as kp
 
 
 
def diff(first, second):
 
second = set(second)
 
return [item for item in first if item not in second]
 
 
 
args = docopt(__doc__)
 
 
detid = args['-d']
 
directory = args['-o']
 
N_DUS = args['-n']
 
N_DUS = int(N_DUS)
 
 
db = kp.db.DBManager()
 
sds = kp.db.StreamDS()
 
 
ACOUSTIC_BEACONS = [12, 14, 16]
 
N_DOMS = 18
 
N_ABS=3
 
DOMS = range(N_DOMS + 1)
 
DUS = range(1, N_DUS + 1)
 
 
TIT = 600 # Time Interval between Trains of acoustic pulses)
 
SSW = 160 # Signal Security Window (Window size with signal)
 
 
check = True
 
while check:
 
 
table = db.run_table(detid)
 
minrun = table["RUN"][len(table["RUN"]) - 1]
 
ind, = np.where((table["RUN"] == minrun))
 
mintime1 = table['UNIXSTARTTIME'][ind]
 
mintime = mintime1.values
 
maxrun = table["RUN"][len(table["RUN"]) - 1]
 
now = time.time()
 
if (now - mintime/1000) < TIT:
 
minrun = table["RUN"][len(table["RUN"]) - 1] - 1
 
print(now)
 
 
N_Pulses_Indicator = [] # Matrix indicating how many pulses each piezo reveals
 
for du in DUS:
 
N_Pulses_Indicator_DU = [] # Array indicating for each DU how many pulses each piezo reveals.
 
for ab in ACOUSTIC_BEACONS:
 
for dom in DOMS:
 
try:
 
domID = db.doms.via_omkey((du, dom), detid).dom_id
 
toas_all = sds.toashort(detid = detid, minrun = minrun, maxrun = maxrun, domid = domID, emitterid = ab)
 
 
QF_abdom = toas_all["QUALITYFACTOR"]
 
UTB_abdom = toas_all["UNIXTIMEBASE"]
 
TOAS_abdom = toas_all["TOA_S"]
 
UTB_abdom = UTB_abdom.values
 
up = np.where(UTB_abdom>(now-TIT))
 
down = np.where(UTB_abdom<(now))
 
intr = np.intersect1d(up,down)
 
UTB_abdom = UTB_abdom[intr]
 
QF_abdom = QF_abdom[intr]
 
QF_abdom = QF_abdom.values
 
QFlist = QF_abdom.tolist()
 
QFlist.sort(reverse = True)
 
QF_max = max(QF_abdom)
 
QF_max_index = np.where(QF_abdom == QF_max)
 
UTB_signal_min = UTB_abdom[QF_max_index] - SSW/2
 
UTB_signal_max = UTB_abdom[QF_max_index] + SSW/2
 
temp1 = np.where(UTB_abdom > (UTB_signal_min[0]))
 
temp2 = np.where(UTB_abdom < (UTB_signal_max[0]))
 
inter = np.intersect1d(temp1, temp2)
 
inter = inter.tolist()
 
signal_index = inter
 
QF_abdom_index = np.where(QF_abdom)
 
all_data_index = QF_abdom_index[0].tolist()
 
noise_index = diff(all_data_index, signal_index)
 
SIGNAL = QF_abdom[signal_index]
 
UTB_SIGNAL = UTB_abdom[signal_index]
 
NOISE = QF_abdom[noise_index]
 
NOISElist = NOISE.tolist()
 
NOISElist.sort(reverse = True)
 
noise_threshold = max(NOISE)
 
 
# First filter: 22 greatest
 
Security_Number = 22 # To be sure to take all the pulses
 
 
SIGNAL = SIGNAL.tolist()
 
SIGNAL_OLD = np.array(SIGNAL)
 
SIGNAL.sort(reverse = True)
 
QF_first = SIGNAL[0:Security_Number]
 
 
# Second filter: delete duplicates
 
 
QF_second = np.unique(QF_first)
 
QF_second = QF_second.tolist()
 
QF_second.sort(reverse = True)
 
 
# Third filter: If there are more than 11 elements I will eliminate the worst
 
 
if len(QF_second) > 11:
 
QF_second = np.array(QF_second)
 
QF_third = [k for k in QF_second if (np.where(QF_second == k)[0][0] < 11)]
 
else:
 
QF_third = QF_second
 
 
# Fourth filter: I remove the data if it is below the maximum noise
 
 
QF_fourth = [k for k in QF_third if k > (noise_threshold + (5*np.std(NOISE)))]
 
 
# Fifth filter: Check if the clicks are interspersed in the right way
 
 
Q = []
 
for q in np.arange(len(QF_fourth)):
 
Q.append(np.where(SIGNAL_OLD == QF_fourth[q])[0][0])
 
UTB_fourth = np.array(UTB_SIGNAL.tolist())[Q]
 
UTB_fourth_l = UTB_fourth.tolist()
 
D = []
 
for g in np.arange(len(UTB_fourth_l)):
 
if ((np.mod((UTB_fourth_l[g] - UTB_fourth_l[0]), 5) > 0.5 and np.mod((UTB_fourth_l[g] - UTB_fourth_l[0]), 5) < 4.5) or (np.mod((UTB_fourth_l[g] - UTB_fourth_l[0]), 5)>5)):
 
D.append(g)
 
for d in sorted(D, reverse = True):
 
del QF_fourth[d]
 
QF_fifth = QF_fourth
 
QF_OK = QF_fifth
 
NUM = len(QF_OK) # Number of pulses
 
print(NUM)
 
 
if (NUM > 7):
 
N_Pulses_Indicator_DU.append(1.5)
 
elif (NUM < 8 and NUM > 3):
 
N_Pulses_Indicator_DU.append(0.5)
 
elif (NUM < 4 and NUM > 0):
 
N_Pulses_Indicator_DU.append(-0.5)
 
elif (NUM == 0):
 
N_Pulses_Indicator_DU.append(-1.5)
 
 
 
except (TypeError, ValueError): # TypeError if no data found for a certain piezo, ValueError if there are zero data for a certain piezo
 
N_Pulses_Indicator_DU.append(-1.5)
 
 
N_Pulses_Indicator.append(N_Pulses_Indicator_DU)
 
 
 
fig = plt.figure()
 
ax = fig.add_subplot(111)
 
N_doms = 18
 
doms = range(N_doms + 1)
 
L = len(doms)
 
 
duab = []
 
DUs = []
 
for du in range(N_DUS):
 
duabdu = []
 
duab1 = (du+0.9)*np.ones(L)
 
duab2 = (du+1)*np.ones(L)
 
duab3 = (du+1.1)*np.ones(L)
 
duabdu.append(duab1)
 
duabdu.append(duab2)
 
duabdu.append(duab3)
 
duab.append(duabdu)
 
DUs.append(np.array(N_Pulses_Indicator[du]))
 
 
ind = np.where(DUs[1] < 1000)
 
iAB1 = np.where(ind[0] < L)
 
iAB2_up = np.where(ind[0] > (L - 1))
 
iAB2_down = np.where(ind[0] < 2*L)
 
iAB2 = np.intersect1d(iAB2_up, iAB2_down)
 
iAB3 = np.where(ind[0] > (2*L - 1))
 
 
colorsList = [(0, 0, 0), (1, 0.3, 0), (1, 1, 0), (0.2, 0.9, 0)]
 
CustomCmap = matplotlib.colors.ListedColormap(colorsList)
 
bounds = [-2, -1, 0, 1, 2]
 
norma = colors.BoundaryNorm(bounds, CustomCmap.N)
 
for du in range(N_DUS):
 
for ab in range(N_ABS):
 
color = ax.scatter(duab[du][ab], doms, s = 20, c = DUs[du][iAB1], norm=norma, marker = 's', cmap = CustomCmap);
 
color = ax.scatter(duab[du][ab], doms, s = 20, c = DUs[du][iAB2], norm=norma, marker = 's', cmap = CustomCmap);
 
color = ax.scatter(duab[du][ab], doms, s = 20, c = DUs[du][iAB3], norm=norma, marker = 's', cmap = CustomCmap);
 
 
cbar = plt.colorbar(color)
 
cbar.ax.get_yaxis().set_ticks([])
 
for j, lab in enumerate(['$0. pings$', '$1-3 pings$', '$4-7 pings$', '$>7. pings$']):
 
cbar.ax.text(3.5, (2*j + 1)/8.0, lab, ha = 'center', va = 'center')
 
cbar.ax.get_yaxis().labelpad = 18
 
 
matplotlib.pyplot.xticks(np.arange(1, N_DUS + 1, step = 1))
 
matplotlib.pyplot.yticks(np.arange(0, 19, step = 1))
 
matplotlib.pyplot.grid(color = 'k', linestyle = '-', linewidth = 0.2)
 
ax.set_xlabel('DUs', fontsize = 18)
 
ax.set_ylabel('Floors', fontsize = 18)
 
ts = now + 3600
 
DATE = datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
 
ax.set_title(r' %.16s Detection of the pings emitted by autonomous beacons' %DATE, fontsize = 10)
 
 
my_path = os.path.abspath(directory)
 
my_file = 'Online_Acoustic_Monitoring.png'
 
 
fig.savefig(os.path.join(my_path, my_file))
 
 
print(time.time())
 
 
check = False
 
check_time = time.time() - now
 
print(check_time)
 
 
time.sleep(abs(TIT - check_time))
 
check = True
Loading