Newer
Older
"""
Custom km3pipe modules for making nn input files.
"""
import numpy as np
import km3pipe as kp
import km3modules as km
import orcasong.plotting.plot_binstats as plot_binstats
__author__ = 'Stefan Reck'
class McInfoMaker(kp.Module):
"""
Daniel Guderian
committed
Stores info as float64 in the blob.
Daniel Guderian
committed
extractor : function
Function to extract the info. Takes the blob as input, outputs
a dict with the desired mc_infos.
store_as : str
Store the mcinfo with this name in the blob.
"""
def configure(self):
Daniel Guderian
committed
self.extractor = self.require('extractor')
self.to_float64 = self.get("to_float64", default=True)
Daniel Guderian
committed
track = self.extractor(blob)
if self.sort_y:
track = {k: track[k] for k in sorted(track)}
if self.to_float64:
dtypes = []
for key, v in track.items():
if key in ("group_id", "event_id"):
dtypes.append((key, type(v)))
else:
dtypes.append((key, np.float64))
else:
kp_hist = kp.dataclasses.Table(
track, dtype=dtypes, h5loc='y', name='event_info')
if len(kp_hist) != 1:
self.log.warning(
"Warning: Extracted mc_info should have len 1, "
"but it has len {}".format(len(kp_hist))
)
blob[self.store_as] = kp_hist
return blob
class TimePreproc(kp.Module):
"""
Preprocess the time in the blob in various ways.
Attributes
----------
add_t0 : bool
If true, t0 will be added to times of hits.
center_time : bool
If true, center hit and mchit times with the time of the first
triggered hit.
"""
def configure(self):
self.add_t0 = self.get('add_t0', default=False)
self.center_time = self.get('center_time', default=True)
self._print_flags = set()
def process(self, blob):
if self.add_t0:
blob = self.add_t0_time(blob)
if self.center_time:
blob = self.center_hittime(blob)
return blob
def add_t0_time(self, blob):
self._print_once("Adding t0 to hit times")
blob["Hits"].time = np.add(blob["Hits"].time, blob["Hits"].t0)
return blob
def center_hittime(self, blob):
hits_time = blob["Hits"].time
hits_triggered = blob["Hits"].triggered
t_first_trigger = np.min(hits_time[hits_triggered != 0])
self._print_once("Centering time of Hits with first triggered hit")
blob["Hits"].time = np.subtract(hits_time, t_first_trigger)
if "McHits" in blob:
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
self._print_once("Centering time of McHits with first triggered hit")
mchits_time = blob["McHits"].time
blob["McHits"].time = np.subtract(mchits_time, t_first_trigger)
return blob
def _print_once(self, text):
if text not in self._print_flags:
self._print_flags.add(text)
self.cprint(text)
class ImageMaker(kp.Module):
"""
Make a n-d histogram from "Hits", and store it in the blob as 'samples'.
Attributes
----------
bin_edges_list : List
List with the names of the fields to bin, and the respective bin edges,
including the left- and right-most bin edge.
hit_weights : str, optional
Use blob["Hits"][hit_weights] as weights for samples in histogram.
"""
def configure(self):
self.bin_edges_list = self.require('bin_edges_list')
self.hit_weights = self.get('hit_weights')
self.store_as = "samples"
def process(self, blob):
data, bins, name = [], [], ""
for bin_name, bin_edges in self.bin_edges_list:
data.append(blob["Hits"][bin_name])
bins.append(bin_edges)
name += bin_name + "_"
if self.hit_weights is not None:
weights = blob["Hits"][self.hit_weights]
else:
weights = None
histogram = np.histogramdd(data, bins=bins, weights=weights)[0]
hist_one_event = histogram[np.newaxis, ...].astype(np.uint8)
kp_hist = kp.dataclasses.NDArray(
hist_one_event, h5loc='x', title=name + "event_images")
blob[self.store_as] = kp_hist
return blob
class BinningStatsMaker(kp.Module):
"""
Generate a histogram of the number of hits for each binning field name.
E.g. if the bin_edges_list contains "pos_z", this will make a histogram
of #Hits vs. "pos_z", together with how many hits were outside
of the bin edges in both directions.
Per default, the resolution of the histogram (width of bins) will be
higher then the given bin edges, and the edges will be stored seperatly.
The time is the exception: The plotted bins have exactly the
given bin edges.
Attributes
----------
bin_edges_list : List
List with the names of the fields to bin, and the respective bin edges,
including the left- and right-most bin edge.
res_increase : int
Increase the number of bins by this much in the hists (so that one
can see if the edges have been placed correctly). Is never used
for the time binning (field name "time").
bin_plot_freq : int
Extract data for the histograms only every given number of blobs
(reduces time the pipeline takes to complete).
"""
def configure(self):
self.bin_edges_list = self.require('bin_edges_list')
self.res_increase = self.get("res_increase", default=5)
self.bin_plot_freq = 1
self.hists = {}
for bin_name, org_bin_edges in self.bin_edges_list:
# dont space bin edges for time
if bin_name == "time":
bin_edges = org_bin_edges
else:
bin_edges = self._space_bin_edges(org_bin_edges)
self.hists[bin_name] = {
"hist": np.zeros(len(bin_edges) - 1),
"hist_bin_edges": bin_edges,
"bin_edges": org_bin_edges,
# below smallest edge, above largest edge:
"cut_off": np.zeros(2),
}
self.i = 0
def _space_bin_edges(self, bin_edges):
"""
Increase resolution of given binning.
"""
increased_n_bins = (len(bin_edges) - 1) * self.res_increase + 1
bin_edges = np.linspace(
bin_edges[0], bin_edges[-1], increased_n_bins)
return bin_edges
def process(self, blob):
"""
Extract data from blob for the hist plots.
"""
if self.i % self.bin_plot_freq == 0:
for bin_name, hists_data in self.hists.items():
hist_bin_edges = hists_data["hist_bin_edges"]
hits = blob["Hits"]
data = hits[bin_name]
# get how much is cut off due to these limits
out_pos = data[data > np.max(hist_bin_edges)].size
out_neg = data[data < np.min(hist_bin_edges)].size
# get all hits which are not cut off by other bin edges
data = hits[bin_name][self._is_in_limits(
hits, excluded=bin_name)]
hist = np.histogram(data, bins=hist_bin_edges)[0]
self.hists[bin_name]["hist"] += hist
self.hists[bin_name]["cut_off"] += np.array([out_neg, out_pos])
self.i += 1
return blob
def finish(self):
"""
Append the hists, which are the stats of the binning.
Its a dict with each binning field name containing the following
ndarrays:
bin_edges : The actual bin edges.
cut_off : How many events were cut off in positive and negative
direction due to this binning.
hist_bin_edges : The bin edges for the plot in finer resolution then
the actual bin edges.
hist : The number of hist in each bin of the hist_bin_edges.
"""
return self.hists
def _is_in_limits(self, hits, excluded=None):
""" Get which hits are in the limits defined by ALL bin edges
(except for given one). """
inside = None
for dfield, edges in self.bin_edges_list:
if dfield == excluded:
continue
is_in = np.logical_and(hits[dfield] >= min(edges),
hits[dfield] <= max(edges))
if inside is None:
inside = is_in
else:
inside = np.logical_and(inside, is_in)
return inside
class PointMaker(kp.Module):
"""
Store individual hit info from "Hits" in the blob as 'samples'.
Used for graph networks.
Attributes
----------
max_n_hits : int
Maximum number of hits that gets saved per event. If an event has
more, some will get cut!
time_window : tuple, optional
Two ints (start, end). Hits outside of this time window will be cut
away (base on 'Hits/time').
Default: Keep all hits.
hit_infos : tuple, optional
Which entries in the '/Hits' Table will be kept. E.g. pos_x, time, ...
Default: Keep all entries.
dset_n_hits : str, optional
If given, store the number of hits that are in the time window
as a new column called 'n_hits_intime' in the dataset with
this name (usually this is EventInfo).
only_triggered_hits : bool
If true, use only triggered hits. Otherwise, use all hits.
"""
def configure(self):
self.max_n_hits = self.require("max_n_hits")
self.hit_infos = self.get("hit_infos", default=None)
self.time_window = self.get("time_window", default=None)
self.dset_n_hits = self.get("dset_n_hits", default=None)
self.only_triggered_hits = self.get("only_triggered_hits", default=False)
self.store_as = "samples"
def process(self, blob):
if self.hit_infos is None:
self.hit_infos = blob["Hits"].dtype.names
points, n_hits = self.get_points(blob)
blob[self.store_as] = kp.NDArray(
np.expand_dims(points, 0), h5loc="x", title="nodes")
if self.dset_n_hits:
blob[self.dset_n_hits] = blob[self.dset_n_hits].append_columns(
"n_hits_intime", n_hits)
return blob
def get_points(self, blob):
"""
Get the desired hit infos from the blob.
Returns
-------
points : np.array
The hit infos of this event as a 2d matrix. No of rows are
fixed to the given max_n_hits. Each of the self.extract_keys,
is in one column + an additional column which is 1 for
actual hits, and 0 for if its a padded row.
n_hits : int
Number of hits in the given time window.
"""
points = np.zeros(
(self.max_n_hits, len(self.hit_infos) + 1), dtype="float32")
hits = blob["Hits"]
if self.only_triggered_hits:
hits = hits[hits.triggered != 0]
if self.time_window is not None:
# remove hits outside of time window
hits = hits[np.logical_and(
hits["time"] >= self.time_window[0],
hits["time"] <= self.time_window[1],
)]
n_hits = len(hits)
if n_hits > self.max_n_hits:
# if there are too many hits, take random ones, but keep order
indices = np.arange(n_hits)
np.random.shuffle(indices)
which = indices[:self.max_n_hits]
which.sort()
hits = hits[which]
for i, which in enumerate(self.hit_infos):
data = hits[which]
points[:n_hits, i] = data
# last column is whether there was a hit or no
points[:n_hits, -1] = 1.
return points, n_hits
def finish(self):
return {"hit_infos": tuple(self.hit_infos) + ("is_valid", )}
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
class EventSkipper(kp.Module):
"""
Skip events based on blob content.
Attributes
----------
event_skipper : callable
Function that takes the blob as an input, and returns a bool.
If the bool is true, the blob will be skipped.
"""
def configure(self):
self.event_skipper = self.require('event_skipper')
self._not_skipped = 0
self._skipped = 0
def process(self, blob):
if self.event_skipper(blob):
self._skipped += 1
return
else:
self._not_skipped += 1
return blob
def finish(self):
tot_events = self._skipped + self._not_skipped
self.cprint(
f"Skipped {self._skipped}/{tot_events} events "
f"({self._skipped/tot_events:.4%})."
)
class DetApplier(kp.Module):
"""
Apply calibration to the Hits and McHits with a detx file.
Attributes
----------
det_file : str
Path to a .detx detector geometry file.
correct_timeslew : bool
If true, the time slewing of hits depending on their tot
will be corrected.
center_hits_to : tuple, optional
Translate the xyz positions of the hits (and mchits), as if
the detector was centered at the given position.
E.g., if its (0, 0, None), the hits and mchits will be
centered at xy = 00, and z will be left untouched.
"""
def configure(self):
self.det_file = self.require("det_file")
self.correct_timeslew = self.get("correct_timeslew", default=True)
self.center_hits_to = self.get("center_hits_to", default=None)
self.cprint(f"Calibrating with {self.det_file}")
self.calib = kp.calib.Calibration(filename=self.det_file)
self._calib_checked = False
# dict dim_name: float
self._vector_shift = None
if self.center_hits_to:
self._cache_shift_center()
def process(self, blob):
if self._calib_checked is False:
if "pos_x" in blob["Hits"]:
self.log.warn(
"Warning: Using a det file, but pos_x in Hits detected. "
"Is the file already calibrated? This might lead to "
"errors with t0."
)
self._calib_checked = True
blob["Hits"] = self.calib.apply(
blob["Hits"], correct_slewing=self.correct_timeslew)
blob["McHits"] = self.calib.apply(blob["McHits"])
if self.center_hits_to:
self.shift_hits(blob)
def shift_hits(self, blob):
""" Translate hits by cached vector. """
for dim_name in ("pos_x", "pos_y", "pos_z"):
blob["Hits"][dim_name] += self._vector_shift[dim_name]
if "McHits" in blob:
blob["McHits"][dim_name] += self._vector_shift[dim_name]
def _cache_shift_center(self):
det_center, shift = {}, {}
for i, dim_name in enumerate(("pos_x", "pos_y", "pos_z")):
center = self.calib.detector.dom_table[dim_name].mean()
det_center[dim_name] = center
if self.center_hits_to[i] is None:
shift[dim_name] = 0
else:
shift[dim_name] = self.center_hits_to[i] - center
self._vector_shift = shift
self.cprint(f"original detector center: {det_center}")
self.cprint(f"shift for hits: {self._vector_shift}")
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
class HitRotator(kp.Module):
"""
Rotates hits by angle theta.
Attributes
----------
theta : float
Angle by which hits are rotated (radian).
"""
def configure(self):
self.theta = self.require('theta')
def process(self, blob):
x = blob['Hits']['x']
y = blob['Hits']['y']
rot_matrix = np.array([[np.cos(self.theta), - np.sin(self.theta)],
[np.sin(self.theta), np.cos(self.theta)]])
x_rot = []
y_rot = []
for i in range(0, len(x)):
vec = np.array([[x[i]], [y[i]]])
rot = np.dot(rot_matrix, vec)
x_rot.append(rot[0][0])
y_rot.append(rot[1][0])
blob['Hits']['x'] = x_rot
blob['Hits']['y'] = y_rot
return blob