Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
OrcaSong
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning
OrcaSong
Commits
368b5a0d
Commit
368b5a0d
authored
4 years ago
by
Stefan Reck
Browse files
Options
Downloads
Patches
Plain Diff
auto choose best n_iterations
parent
aa51e454
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
orcasong/tools/shuffle2.py
+42
-22
42 additions, 22 deletions
orcasong/tools/shuffle2.py
with
42 additions
and
22 deletions
orcasong/tools/shuffle2.py
+
42
−
22
View file @
368b5a0d
...
...
@@ -21,8 +21,7 @@ def shuffle_v2(
max_ram
=
None
,
max_ram_fraction
=
0.25
,
chunks
=
False
,
delete
=
False
,
seed
=
42
):
delete
=
False
):
"""
Shuffle datasets in a h5file that have the same length.
...
...
@@ -48,8 +47,6 @@ def shuffle_v2(
to be accurate! (use a node with at least 32gb, the more the better)
delete : bool
Delete the original file afterwards?
seed : int
Sets a fixed random seed for the shuffling.
Returns
-------
...
...
@@ -63,13 +60,11 @@ def shuffle_v2(
if
os
.
path
.
exists
(
output_file
):
raise
FileExistsError
(
output_file
)
if
max_ram
is
None
:
max_ram
=
max_ram_fraction
*
psutil
.
virtual_memory
().
available
print
(
f
"
Using
{
max_ram_fraction
:
.
2
%
}
of available ram =
{
max_ram
}
bytes
"
)
max_ram
=
get_max_ram
(
max_ram_fraction
)
temp_output_file
=
output_file
+
"
_temp_
"
+
time
.
strftime
(
"
%d-%m-%Y-%H-%M-%S
"
,
time
.
gmtime
())
with
h5py
.
File
(
input_file
,
"
r
"
)
as
f_in
:
dset_infos
,
n_lines
=
get_dset_infos
(
f_in
,
datasets
,
max_ram
)
np
.
random
.
seed
(
seed
)
print
(
f
"
Shuffling datasets
{
datasets
}
with
{
n_lines
}
lines each
"
)
if
not
chunks
:
...
...
@@ -100,6 +95,12 @@ def shuffle_v2(
return
output_file
def
get_max_ram
(
max_ram_fraction
):
max_ram
=
max_ram_fraction
*
psutil
.
virtual_memory
().
available
print
(
f
"
Using
{
max_ram_fraction
:
.
2
%
}
of available ram =
{
max_ram
}
bytes
"
)
return
max_ram
def
get_indices_largest
(
dset_infos
):
largest_dset
=
np
.
argmax
([
v
[
"
n_batches_chunkwise
"
]
for
v
in
dset_infos
])
dset_info
=
dset_infos
[
largest_dset
]
...
...
@@ -108,9 +109,6 @@ def get_indices_largest(dset_infos):
ratio
=
dset_info
[
'
chunks_per_batch
'
]
/
dset_info
[
'
n_chunks
'
]
print
(
f
"
Chunks per batch:
{
dset_info
[
'
chunks_per_batch
'
]
}
(
{
ratio
:
.
2
%
}
)
"
)
if
ratio
<=
0.1
:
print
(
"
Warning: Should have more than
"
"
10% of chunks per batch to ensure proper shuffling!
"
)
return
get_indices_chunked
(
dset_info
[
"
n_batches_chunkwise
"
],
dset_info
[
"
n_chunks
"
],
...
...
@@ -118,6 +116,22 @@ def get_indices_largest(dset_infos):
)
def
get_n_iterations
(
input_file
,
datasets
=
(
"
x
"
,
"
y
"
),
max_ram
=
None
,
max_ram_fraction
=
0.25
):
"""
Get how often you have to shuffle with given ram to get proper randomness.
"""
if
max_ram
is
None
:
max_ram
=
get_max_ram
(
max_ram_fraction
=
max_ram_fraction
)
with
h5py
.
File
(
input_file
,
"
r
"
)
as
f_in
:
dset_infos
,
n_lines
=
get_dset_infos
(
f_in
,
datasets
,
max_ram
)
largest_dset
=
np
.
argmax
([
v
[
"
n_batches_chunkwise
"
]
for
v
in
dset_infos
])
dset_info
=
dset_infos
[
largest_dset
]
n_iterations
=
int
(
np
.
ceil
(
np
.
log
(
dset_info
[
'
n_chunks
'
])
/
np
.
log
(
dset_info
[
'
chunks_per_batch
'
])))
print
(
f
"
Total chunks:
{
dset_info
[
'
n_chunks
'
]
}
"
)
print
(
f
"
Chunks per batch:
{
dset_info
[
'
chunks_per_batch
'
]
}
"
)
print
(
f
"
--> min iterations for full shuffle:
{
n_iterations
}
"
)
return
n_iterations
def
get_indices_chunked
(
n_batches
,
n_chunks
,
chunksize
):
"""
Return a list with the chunkwise shuffled indices of each batch.
"""
chunk_indices
=
np
.
arange
(
n_chunks
)
...
...
@@ -255,22 +269,22 @@ def slicify(fancy_indices):
def
h5shuffle2
():
parser
=
argparse
.
ArgumentParser
(
description
=
'
Shuffle datasets in a h5file that have the same length.
'
'
Uses chunkwise readout for a pseudo-shuffle, so shuffling
'
'
multiple times is recommended for larger files.
'
)
description
=
'
Shuffle datasets in a h5file that have the same length.
'
'
Uses chunkwise readout for speed-up.
'
)
parser
.
add_argument
(
'
input_file
'
,
type
=
str
,
help
=
'
Path of the file that will be shuffled.
'
)
parser
.
add_argument
(
'
--output_file
'
,
type
=
str
,
parser
.
add_argument
(
'
--output_file
'
,
type
=
str
,
default
=
None
,
help
=
'
If given, this will be the name of the output file.
'
'
Otherwise, a name is auto generated
.
'
)
'
Default: input_file + suffix
.
'
)
parser
.
add_argument
(
'
--datasets
'
,
type
=
str
,
nargs
=
"
*
"
,
default
=
(
"
x
"
,
"
y
"
),
help
=
'
Which datasets to include in output. Default: x, y
'
)
parser
.
add_argument
(
'
--max_ram_fraction
'
,
type
=
float
,
default
=
0.25
,
help
=
"
in [0, 1]. Fraction of ram to use for reading one batch of data
"
"
when max_ram is None. Note: this should
"
"
be <=~0.25 or so, since lots of ram is needed for in-memory shuffling.
"
)
parser
.
add_argument
(
'
--iterations
'
,
type
=
int
,
default
=
2
,
help
=
"
Shuffle the file this many times. Default: 2
"
)
help
=
"
in [0, 1]. Fraction of all available ram to use for reading one batch of data
"
"
Note: this should
"
"
be <=~0.25 or so, since lots of ram is needed for in-memory shuffling.
"
"
Default: 0.25
"
)
parser
.
add_argument
(
'
--iterations
'
,
type
=
int
,
default
=
None
,
help
=
"
Shuffle the file this many times. Default: Auto choose best number.
"
)
kwargs
=
vars
(
parser
.
parse_args
())
input_file
=
kwargs
.
pop
(
"
input_file
"
)
...
...
@@ -278,9 +292,15 @@ def h5shuffle2():
if
output_file
is
None
:
output_file
=
get_filepath_output
(
input_file
,
shuffle
=
True
)
iterations
=
kwargs
.
pop
(
"
iterations
"
)
if
iterations
is
None
:
iterations
=
get_n_iterations
(
input_file
,
datasets
=
kwargs
[
"
datasets
"
],
max_ram_fraction
=
kwargs
[
"
max_ram_fraction
"
],
)
np
.
random
.
seed
(
42
)
for
i
in
range
(
iterations
):
print
(
f
"
Iteration
{
i
}
"
)
print
(
f
"
\n
Iteration
{
i
+
1
}
/
{
iterations
}
"
)
if
i
==
0
:
# first iteration
stgs
=
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment