Skip to content
Snippets Groups Projects
Commit 9ce542e5 authored by Stefan Reck's avatar Stefan Reck
Browse files

black

parent c3ccddf7
No related branches found
No related tags found
1 merge request!11Resolve "mc_info_extractor for neutrino reco chain"
This commit is part of merge request !11. Comments created here will be created in the context of that merge request.
...@@ -13,442 +13,488 @@ import numpy as np ...@@ -13,442 +13,488 @@ import numpy as np
from km3pipe.io.hdf5 import HDF5Header from km3pipe.io.hdf5 import HDF5Header
from h5py import File from h5py import File
__author__ = 'Daniel Guderian' __author__ = "Daniel Guderian"
def get_std_reco(blob): def get_std_reco(blob):
""" """
Function to extract std reco info. The implemented strategy is the following: Function to extract std reco info. The implemented strategy is the following:
First, look for whether a rec stag has been reached and only then extract the reconstructed First, look for whether a rec stag has been reached and only then extract the reconstructed
paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with
exactly zero have to be filtered out! exactly zero have to be filtered out!
The 'best track' is the first (highest lik) while a certain rec stage has to be reached. This might The 'best track' is the first (highest lik) while a certain rec stage has to be reached. This might
have to be adjusted for other recos than JMuonGandalf chain. have to be adjusted for other recos than JMuonGandalf chain.
Members of the Tracks: Members of the Tracks:
dtype([('E', '<f8'), ('JCOPY_Z_M', '<f4'), ('JENERGY_CHI2', '<f4'), ('JENERGY_ENERGY', '<f4'), dtype([('E', '<f8'), ('JCOPY_Z_M', '<f4'), ('JENERGY_CHI2', '<f4'), ('JENERGY_ENERGY', '<f4'),
('JENERGY_MUON_RANGE_METRES', '<f4'), ('JENERGY_NDF', '<f4'), ('JENERGY_NOISE_LIKELIHOOD', '<f4'), ('JENERGY_MUON_RANGE_METRES', '<f4'), ('JENERGY_NDF', '<f4'), ('JENERGY_NOISE_LIKELIHOOD', '<f4'),
('JENERGY_NUMBER_OF_HITS', '<f4'), ('JGANDALF_BETA0_RAD', '<f4'), ('JGANDALF_BETA1_RAD', '<f4'), ('JENERGY_NUMBER_OF_HITS', '<f4'), ('JGANDALF_BETA0_RAD', '<f4'), ('JGANDALF_BETA1_RAD', '<f4'),
('JGANDALF_CHI2', '<f4'), ('JGANDALF_LAMBDA', '<f4'), ('JGANDALF_NUMBER_OF_HITS', '<f4'), ('JGANDALF_CHI2', '<f4'), ('JGANDALF_LAMBDA', '<f4'), ('JGANDALF_NUMBER_OF_HITS', '<f4'),
('JGANDALF_NUMBER_OF_ITERATIONS', '<f4'), ('JSHOWERFIT_ENERGY', '<f4'), ('JSTART_LENGTH_METRES', '<f4'), ('JGANDALF_NUMBER_OF_ITERATIONS', '<f4'), ('JSHOWERFIT_ENERGY', '<f4'), ('JSTART_LENGTH_METRES', '<f4'),
('JSTART_NPE_MIP', '<f4'), ('JSTART_NPE_MIP_TOTAL', '<f4'), ('JVETO_NPE', '<f4'), ('JVETO_NUMBER_OF_HITS', '<f4'), ('JSTART_NPE_MIP', '<f4'), ('JSTART_NPE_MIP_TOTAL', '<f4'), ('JVETO_NPE', '<f4'), ('JVETO_NUMBER_OF_HITS', '<f4'),
('dir_x', '<f8'), ('dir_y', '<f8'), ('dir_z', '<f8'), ('id', '<i4'), ('idx', '<i8'), ('length', '<f8'), ('dir_x', '<f8'), ('dir_y', '<f8'), ('dir_z', '<f8'), ('id', '<i4'), ('idx', '<i8'), ('length', '<f8'),
('likelihood', '<f8'), ('pos_x', '<f8'), ('pos_y', '<f8'), ('pos_z', '<f8'), ('rec_type', '<i4'), ('likelihood', '<f8'), ('pos_x', '<f8'), ('pos_y', '<f8'), ('pos_z', '<f8'), ('rec_type', '<i4'),
('t', '<f8'), ('group_id', '<i8')]) ('t', '<f8'), ('group_id', '<i8')])
members of rec stages: members of rec stages:
.idx (corresponding to the track id), .idx (corresponding to the track id),
.rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf, .rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf,
4=engery, 5=start), 4=engery, 5=start),
.group_id (event id in file) .group_id (event id in file)
Parameters Parameters
---------- ----------
blob : blob containing the reco info blob : blob containing the reco info
Returns Returns
------- -------
std_reco_info : dict std_reco_info : dict
Dict with the most common std reco params. Can be expanded. Dict with the most common std reco params. Can be expanded.
""" """
#use this later to identify not reconstructed events # use this later to identify not reconstructed events
dummy_value = 0 dummy_value = 0
#if there was no std reco at all, this will not exist # if there was no std reco at all, this will not exist
#these are events that stopped at/before prefit # these are events that stopped at/before prefit
try: try:
rec_stages = blob["RecStages"] rec_stages = blob["RecStages"]
#get first track only # get first track only
rec_stages_best_track = rec_stages.rec_stage[rec_stages.idx==0] rec_stages_best_track = rec_stages.rec_stage[rec_stages.idx == 0]
# often enough: best track is the first # often enough: best track is the first
best_track = blob["Tracks"][0] best_track = blob["Tracks"][0]
except KeyError: except KeyError:
rec_stages_best_track = [] rec_stages_best_track = []
print("An event didnt have any reco. Setting everything to" + str(dummy_value) + ".") print(
"An event didnt have any reco. Setting everything to"
#take the direction only if JGanalf was executed + str(dummy_value)
if 3 in rec_stages_best_track: + "."
)
std_dir_x = best_track["dir_x"]
std_dir_y = best_track["dir_y"] # take the direction only if JGanalf was executed
std_dir_z = best_track["dir_z"] if 3 in rec_stages_best_track:
std_beta0 = best_track["JGANDALF_BETA0_RAD"] std_dir_x = best_track["dir_x"]
std_lik = best_track["likelihood"] std_dir_y = best_track["dir_y"]
std_n_hits_gandalf = best_track["JGANDALF_NUMBER_OF_HITS"] std_dir_z = best_track["dir_z"]
else: std_beta0 = best_track["JGANDALF_BETA0_RAD"]
std_lik = best_track["likelihood"]
std_dir_x = dummy_value std_n_hits_gandalf = best_track["JGANDALF_NUMBER_OF_HITS"]
std_dir_y = dummy_value
std_dir_z = dummy_value else:
std_beta0 = dummy_value std_dir_x = dummy_value
std_lik = dummy_value std_dir_y = dummy_value
std_n_hits_gandalf = dummy_value std_dir_z = dummy_value
#energy fit from JEnergy std_beta0 = dummy_value
if 4 in rec_stages_best_track: std_lik = dummy_value
std_n_hits_gandalf = dummy_value
std_energy = best_track["E"]
lik_energy = best_track["JENERGY_CHI2"] # energy fit from JEnergy
if 4 in rec_stages_best_track:
else:
std_energy = dummy_value std_energy = best_track["E"]
lik_energy = dummy_value lik_energy = best_track["JENERGY_CHI2"]
#vertex and length from JStart else:
if 5 in rec_stages_best_track: std_energy = dummy_value
lik_energy = dummy_value
std_pos_x = best_track["pos_x"]
std_pos_y = best_track["pos_y"] # vertex and length from JStart
std_pos_z = best_track["pos_z"] if 5 in rec_stages_best_track:
std_length = best_track["JSTART_LENGTH_METRES"] std_pos_x = best_track["pos_x"]
std_pos_y = best_track["pos_y"]
else: std_pos_z = best_track["pos_z"]
std_pos_x = dummy_value std_length = best_track["JSTART_LENGTH_METRES"]
std_pos_y = dummy_value
std_pos_z = dummy_value else:
std_length = dummy_value std_pos_x = dummy_value
std_pos_y = dummy_value
std_reco_info = { std_pos_z = dummy_value
'std_dir_x':std_dir_x,'std_dir_y':std_dir_y,'std_dir_z':std_dir_z,
'std_beta0':std_beta0,'std_lik':std_lik,'std_n_hits_gandalf':std_n_hits_gandalf, std_length = dummy_value
'std_pos_x':std_pos_x,'std_pos_y':std_pos_y,'std_pos_z':std_pos_z, std_reco_info = {
'std_energy':std_energy,'std_lik_energy':lik_energy,'std_length':std_length, "std_dir_x": std_dir_x,
} "std_dir_y": std_dir_y,
"std_dir_z": std_dir_z,
return std_reco_info "std_beta0": std_beta0,
"std_lik": std_lik,
"std_n_hits_gandalf": std_n_hits_gandalf,
"std_pos_x": std_pos_x,
"std_pos_y": std_pos_y,
"std_pos_z": std_pos_z,
"std_energy": std_energy,
"std_lik_energy": lik_energy,
"std_length": std_length,
}
return std_reco_info
def get_real_data_info_extr(input_file): def get_real_data_info_extr(input_file):
""" """
Wrapper function that includes the actual mc_info_extr Wrapper function that includes the actual mc_info_extr
for real data. There are no n_gen like in the neutrino case. for real data. There are no n_gen like in the neutrino case.
Parameters Parameters
---------- ----------
input_file : km3net data file input_file : km3net data file
Can be online or offline format. Can be online or offline format.
Returns Returns
------- -------
mc_info_extr : function mc_info_extr : function
The actual mc_info_extr function that holds the extractions. The actual mc_info_extr function that holds the extractions.
""" """
#check if std reco is present # check if std reco is present
f = File(input_file,"r") f = File(input_file, "r")
has_std_reco = "reco" in f.keys() has_std_reco = "reco" in f.keys()
def mc_info_extr(blob): def mc_info_extr(blob):
""" """
Processes a blob and creates the y with mc_info and, if existing, std reco. Processes a blob and creates the y with mc_info and, if existing, std reco.
For this real data case it is only general event info, like the id. For this real data case it is only general event info, like the id.
Parameters Parameters
---------- ----------
blob : dict blob : dict
The blob from the pipeline. The blob from the pipeline.
Returns Returns
------- -------
track : dict track : dict
Containing all the specified info the y should have. Containing all the specified info the y should have.
""" """
event_info = blob['EventInfo'][0] event_info = blob["EventInfo"][0]
#add n_hits info for the cut # add n_hits info for the cut
n_hits = len(blob['Hits']) n_hits = len(blob["Hits"])
track = { track = {
'event_id': event_info.event_id, "event_id": event_info.event_id,
'run_id': event_info.run_id, "run_id": event_info.run_id,
'trigger_mask': event_info.trigger_mask, "trigger_mask": event_info.trigger_mask,
'n_hits': n_hits, "n_hits": n_hits,
} }
#get all the std reco info # get all the std reco info
if has_std_reco: if has_std_reco:
std_reco_info = get_std_reco(blob) std_reco_info = get_std_reco(blob)
track.update(std_reco_info) track.update(std_reco_info)
return track return track
return mc_info_extr return mc_info_extr
def get_random_noise_mc_info_extr(input_file): def get_random_noise_mc_info_extr(input_file):
""" """
Wrapper function that includes the actual mc_info_extr Wrapper function that includes the actual mc_info_extr
for random noise simulations. There are no n_gen like in the neutrino case. for random noise simulations. There are no n_gen like in the neutrino case.
Parameters Parameters
---------- ----------
input_file : km3net data file input_file : km3net data file
Can be online or offline format. Can be online or offline format.
Returns Returns
------- -------
mc_info_extr : function mc_info_extr : function
The actual mc_info_extr function that holds the extractions. The actual mc_info_extr function that holds the extractions.
""" """
#check if std reco is present # check if std reco is present
f = File(input_file,"r") f = File(input_file, "r")
has_std_reco = "reco" in f.keys() has_std_reco = "reco" in f.keys()
def mc_info_extr(blob): def mc_info_extr(blob):
""" """
Processes a blob and creates the y with mc_info and, if existing, std reco. Processes a blob and creates the y with mc_info and, if existing, std reco.
For this random noise case it is only general event info, like the id. For this random noise case it is only general event info, like the id.
Parameters Parameters
---------- ----------
blob : dict blob : dict
The blob from the pipeline. The blob from the pipeline.
Returns Returns
------- -------
track : dict track : dict
Containing all the specified info the y should have. Containing all the specified info the y should have.
""" """
event_info = blob['EventInfo'] event_info = blob["EventInfo"]
track = { track = {
'event_id': event_info.event_id[0], "event_id": event_info.event_id[0],
'run_id': event_info.run_id[0], "run_id": event_info.run_id[0],
'particle_type': 0, "particle_type": 0,
} }
#get all the std reco info # get all the std reco info
if has_std_reco: if has_std_reco:
std_reco_info = get_std_reco(blob) std_reco_info = get_std_reco(blob)
track.update(std_reco_info) track.update(std_reco_info)
return track return track
return mc_info_extr return mc_info_extr
def get_neutrino_mc_info_extr(input_file): def get_neutrino_mc_info_extr(input_file):
""" """
Wrapper function that includes the actual mc_info_extr Wrapper function that includes the actual mc_info_extr
for neutrino simulations. The n_gen parameter, needed for neutrino weighting for neutrino simulations. The n_gen parameter, needed for neutrino weighting
is extracted from the header of the file. is extracted from the header of the file.
Parameters Parameters
---------- ----------
input_file : km3net data file input_file : km3net data file
Can be online or offline format. Can be online or offline format.
Returns Returns
------- -------
mc_info_extr : function mc_info_extr : function
The actual mc_info_extr function that holds the extractions. The actual mc_info_extr function that holds the extractions.
""" """
#check if std reco is present # check if std reco is present
f = File(input_file,"r") f = File(input_file, "r")
has_std_reco = "reco" in f.keys() has_std_reco = "reco" in f.keys()
#get the n_gen # get the n_gen
header = HDF5Header.from_hdf5(input_file) header = HDF5Header.from_hdf5(input_file)
n_gen = header.genvol.numberOfEvents n_gen = header.genvol.numberOfEvents
def mc_info_extr(blob): def mc_info_extr(blob):
"""
""" Processes a blob and creates the y with mc_info and, if existing, std reco.
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this neutrino case it is the full mc info for the primary neutrino; there are the several "McTracks":
For this neutrino case it is the full mc info for the primary neutrino; there are the several "McTracks": check the simulation which index "p" the neutrino has.
check the simulation which index "p" the neutrino has.
Parameters
Parameters ----------
---------- blob : dict
blob : dict The blob from the pipeline.
The blob from the pipeline.
Returns
Returns -------
------- track : dict
track : dict Containing all the specified info the y should have.
Containing all the specified info the y should have.
"""
"""
# get general info about the event
#get general info about the event event_id = blob["EventInfo"].event_id[0]
event_id = blob['EventInfo'].event_id[0] run_id = blob["EventInfo"].run_id[0]
run_id = blob["EventInfo"].run_id[0] # weights for neutrino analysis
#weights for neutrino analysis weight_w1 = blob["EventInfo"].weight_w1[0]
weight_w1 = blob["EventInfo"].weight_w1[0] weight_w2 = blob["EventInfo"].weight_w2[0]
weight_w2 = blob["EventInfo"].weight_w2[0] weight_w3 = blob["EventInfo"].weight_w3[0]
weight_w3 = blob["EventInfo"].weight_w3[0]
# first, look for the particular neutrino index of the production
# first, look for the particular neutrino index of the production p = 0 # for ORCA4 (and probably subsequent productions)
p = 0 #for ORCA4 (and probably subsequent productions)
mc_track = blob["McTracks"][p]
mc_track = blob['McTracks'][p]
# some track mc truth info
#some track mc truth info particle_type = mc_track.type
particle_type = mc_track.type energy = mc_track.energy
energy = mc_track.energy is_cc = mc_track.cc
is_cc = mc_track.cc bjorkeny = mc_track.by
bjorkeny = mc_track.by dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z
dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z time_interaction = (
time_interaction = mc_track.time # actually always 0 for primary neutrino, measured in MC time mc_track.time
vertex_pos_x, vertex_pos_y, vertex_pos_z = mc_track.pos_x, mc_track.pos_y, mc_track.pos_z ) # actually always 0 for primary neutrino, measured in MC time
vertex_pos_x, vertex_pos_y, vertex_pos_z = (
#add also the nhits info mc_track.pos_x,
n_hits = len(blob['Hits']) mc_track.pos_y,
mc_track.pos_z,
track = {'event_id': event_id, 'particle_type': particle_type, 'energy': energy, 'is_cc': is_cc, )
'bjorkeny': bjorkeny, 'dir_x': dir_x, 'dir_y': dir_y, 'dir_z': dir_z,
'time_interaction': time_interaction, 'run_id': run_id, 'vertex_pos_x': vertex_pos_x, # add also the nhits info
'vertex_pos_y': vertex_pos_y, 'vertex_pos_z': vertex_pos_z, n_hits = len(blob["Hits"])
'n_hits': n_hits,
'weight_w1': weight_w1,'weight_w2': weight_w2,'weight_w3': weight_w3, track = {
'n_gen':n_gen, "event_id": event_id,
} "particle_type": particle_type,
print(is_cc) "energy": energy,
#get all the std reco info "is_cc": is_cc,
if has_std_reco: "bjorkeny": bjorkeny,
"dir_x": dir_x,
std_reco_info = get_std_reco(blob) "dir_y": dir_y,
"dir_z": dir_z,
track.update(std_reco_info) "time_interaction": time_interaction,
"run_id": run_id,
return track "vertex_pos_x": vertex_pos_x,
"vertex_pos_y": vertex_pos_y,
return mc_info_extr "vertex_pos_z": vertex_pos_z,
"n_hits": n_hits,
"weight_w1": weight_w1,
"weight_w2": weight_w2,
"weight_w3": weight_w3,
"n_gen": n_gen,
}
print(is_cc)
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
def get_muon_mc_info_extr(input_file): def get_muon_mc_info_extr(input_file):
""" """
Wrapper function that includes the actual mc_info_extr Wrapper function that includes the actual mc_info_extr
for atm. muon simulations. There are no n_gen like in the neutrino case. for atm. muon simulations. There are no n_gen like in the neutrino case.
Parameters Parameters
---------- ----------
input_file : km3net data file input_file : km3net data file
Can be online or offline format. Can be online or offline format.
Returns Returns
------- -------
mc_info_extr : function mc_info_extr : function
The actual mc_info_extr function that holds the extractions. The actual mc_info_extr function that holds the extractions.
""" """
#check if std reco is present # check if std reco is present
f = File(input_file,"r") f = File(input_file, "r")
has_std_reco = "reco" in f.keys() has_std_reco = "reco" in f.keys()
#no n_gen here, but needed for concatenation # no n_gen here, but needed for concatenation
n_gen = 1 n_gen = 1
def mc_info_extr(blob):
def mc_info_extr(blob):
"""
""" Processes a blob and creates the y with mc_info and, if existing, std reco.
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this atm. muon case it is the full mc info for the primary; there are the several "McTracks":
For this atm. muon case it is the full mc info for the primary; there are the several "McTracks": check the simulation to understand what "p" you want. Muons come in bundles that have the same direction.
check the simulation to understand what "p" you want. Muons come in bundles that have the same direction. For energy: sum of all muons in a bundle,
For energy: sum of all muons in a bundle, for vertex: weighted (energy) mean of the individual vertices .
for vertex: weighted (energy) mean of the individual vertices .
Parameters
Parameters ----------
---------- blob : dict
blob : dict The blob from the pipeline.
The blob from the pipeline.
Returns
Returns -------
------- track : dict
track : dict Containing all the specified info the y should have.
Containing all the specified info the y should have.
"""
"""
event_id = blob["EventInfo"].event_id[0]
event_id = blob['EventInfo'].event_id[0] run_id = blob["EventInfo"].run_id[0]
run_id = blob["EventInfo"].run_id[0]
p = 0 # for ORCA4 (and probably subsequent productions)
p = 0 #for ORCA4 (and probably subsequent productions)
mc_track = blob["McTracks"][p]
mc_track = blob['McTracks'][p]
particle_type = (
particle_type = mc_track.type # assumed that this is the same for all muons in a bundle mc_track.type
is_cc = mc_track.cc # always 0 actually ) # assumed that this is the same for all muons in a bundle
bjorkeny = mc_track.by is_cc = mc_track.cc # always 0 actually
time_interaction = mc_track.time # same for all muons in a bundle bjorkeny = mc_track.by
time_interaction = mc_track.time # same for all muons in a bundle
# sum up the energy of all muons
energy = np.sum(blob['McTracks'].energy) # sum up the energy of all muons
energy = np.sum(blob["McTracks"].energy)
# all muons in a bundle are parallel, so just take dir of first muon
dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z # all muons in a bundle are parallel, so just take dir of first muon
dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z
# vertex is the weighted (energy) mean of the individual vertices
vertex_pos_x = np.average(blob['McTracks'][p:].pos_x, weights=blob['McTracks'][p:].energy) # vertex is the weighted (energy) mean of the individual vertices
vertex_pos_y = np.average(blob['McTracks'][p:].pos_y, weights=blob['McTracks'][p:].energy) vertex_pos_x = np.average(
vertex_pos_z = np.average(blob['McTracks'][p:].pos_z, weights=blob['McTracks'][p:].energy) blob["McTracks"][p:].pos_x, weights=blob["McTracks"][p:].energy
)
#add also the nhits info vertex_pos_y = np.average(
n_hits = len(blob['Hits']) blob["McTracks"][p:].pos_y, weights=blob["McTracks"][p:].energy
)
#this is only relevant for neutrinos, though dummy info is needed for the concatenation vertex_pos_z = np.average(
weight_w1 = 10 blob["McTracks"][p:].pos_z, weights=blob["McTracks"][p:].energy
weight_w2 = 10 )
weight_w3 = 10
# add also the nhits info
track = {'event_id': event_id, 'particle_type': particle_type, 'energy': energy, 'is_cc': is_cc, n_hits = len(blob["Hits"])
'bjorkeny': bjorkeny, 'dir_x': dir_x, 'dir_y': dir_y, 'dir_z': dir_z,
'time_interaction': time_interaction, 'run_id': run_id, 'vertex_pos_x': vertex_pos_x, # this is only relevant for neutrinos, though dummy info is needed for the concatenation
'vertex_pos_y': vertex_pos_y, 'vertex_pos_z': vertex_pos_z, weight_w1 = 10
'n_hits': n_hits, weight_w2 = 10
weight_w3 = 10
'weight_w1': weight_w1,'weight_w2': weight_w2,'weight_w3': weight_w3,
'n_gen':n_gen, track = {
} "event_id": event_id,
"particle_type": particle_type,
#get all the std reco info "energy": energy,
if has_std_reco: "is_cc": is_cc,
"bjorkeny": bjorkeny,
std_reco_info = get_std_reco(blob) "dir_x": dir_x,
"dir_y": dir_y,
track.update(std_reco_info) "dir_z": dir_z,
"time_interaction": time_interaction,
return track "run_id": run_id,
"vertex_pos_x": vertex_pos_x,
return mc_info_extr "vertex_pos_y": vertex_pos_y,
"vertex_pos_z": vertex_pos_z,
"n_hits": n_hits,
"weight_w1": weight_w1,
"weight_w2": weight_w2,
"weight_w3": weight_w3,
"n_gen": n_gen,
}
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment