Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
OrcaSong
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning
OrcaSong
Merge requests
!11
Resolve "mc_info_extractor for neutrino reco chain"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "mc_info_extractor for neutrino reco chain"
15-mc_info_extractor-for-neutrino-reco-chain
into
master
Overview
0
Commits
9
Pipelines
10
Changes
1
Merged
Daniel Guderian
requested to merge
15-mc_info_extractor-for-neutrino-reco-chain
into
master
4 years ago
Overview
0
Commits
9
Pipelines
10
Changes
1
Expand
Closes
#15 (closed)
Edited
4 years ago
by
Daniel Guderian
0
0
Merge request reports
Viewing commit
9ce542e5
Prev
Next
Show latest version
1 file
+
475
−
429
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
9ce542e5
black
· 9ce542e5
Stefan Reck
authored
4 years ago
orcasong/mc_info_extr.py
+
475
−
429
Options
@@ -13,442 +13,488 @@ import numpy as np
from
km3pipe.io.hdf5
import
HDF5Header
from
h5py
import
File
__author__
=
'
Daniel Guderian
'
__author__
=
"
Daniel Guderian
"
def
get_std_reco
(
blob
):
"""
Function to extract std reco info. The implemented strategy is the following:
First, look for whether a rec stag has been reached and only then extract the reconstructed
paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with
exactly zero have to be filtered out!
The
'
best track
'
is the first (highest lik) while a certain rec stage has to be reached. This might
have to be adjusted for other recos than JMuonGandalf chain.
Members of the Tracks:
dtype([(
'
E
'
,
'
<f8
'
), (
'
JCOPY_Z_M
'
,
'
<f4
'
), (
'
JENERGY_CHI2
'
,
'
<f4
'
), (
'
JENERGY_ENERGY
'
,
'
<f4
'
),
(
'
JENERGY_MUON_RANGE_METRES
'
,
'
<f4
'
), (
'
JENERGY_NDF
'
,
'
<f4
'
), (
'
JENERGY_NOISE_LIKELIHOOD
'
,
'
<f4
'
),
(
'
JENERGY_NUMBER_OF_HITS
'
,
'
<f4
'
), (
'
JGANDALF_BETA0_RAD
'
,
'
<f4
'
), (
'
JGANDALF_BETA1_RAD
'
,
'
<f4
'
),
(
'
JGANDALF_CHI2
'
,
'
<f4
'
), (
'
JGANDALF_LAMBDA
'
,
'
<f4
'
), (
'
JGANDALF_NUMBER_OF_HITS
'
,
'
<f4
'
),
(
'
JGANDALF_NUMBER_OF_ITERATIONS
'
,
'
<f4
'
), (
'
JSHOWERFIT_ENERGY
'
,
'
<f4
'
), (
'
JSTART_LENGTH_METRES
'
,
'
<f4
'
),
(
'
JSTART_NPE_MIP
'
,
'
<f4
'
), (
'
JSTART_NPE_MIP_TOTAL
'
,
'
<f4
'
), (
'
JVETO_NPE
'
,
'
<f4
'
), (
'
JVETO_NUMBER_OF_HITS
'
,
'
<f4
'
),
(
'
dir_x
'
,
'
<f8
'
), (
'
dir_y
'
,
'
<f8
'
), (
'
dir_z
'
,
'
<f8
'
), (
'
id
'
,
'
<i4
'
), (
'
idx
'
,
'
<i8
'
), (
'
length
'
,
'
<f8
'
),
(
'
likelihood
'
,
'
<f8
'
), (
'
pos_x
'
,
'
<f8
'
), (
'
pos_y
'
,
'
<f8
'
), (
'
pos_z
'
,
'
<f8
'
), (
'
rec_type
'
,
'
<i4
'
),
(
'
t
'
,
'
<f8
'
), (
'
group_id
'
,
'
<i8
'
)])
members of rec stages:
.idx (corresponding to the track id),
.rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf,
4=engery, 5=start),
.group_id (event id in file)
Parameters
----------
blob : blob containing the reco info
Returns
-------
std_reco_info : dict
Dict with the most common std reco params. Can be expanded.
"""
#use this later to identify not reconstructed events
dummy_value
=
0
#if there was no std reco at all, this will not exist
#these are events that stopped at/before prefit
try
:
rec_stages
=
blob
[
"
RecStages
"
]
#get first track only
rec_stages_best_track
=
rec_stages
.
rec_stage
[
rec_stages
.
idx
==
0
]
# often enough: best track is the first
best_track
=
blob
[
"
Tracks
"
][
0
]
except
KeyError
:
rec_stages_best_track
=
[]
print
(
"
An event didnt have any reco. Setting everything to
"
+
str
(
dummy_value
)
+
"
.
"
)
#take the direction only if JGanalf was executed
if
3
in
rec_stages_best_track
:
std_dir_x
=
best_track
[
"
dir_x
"
]
std_dir_y
=
best_track
[
"
dir_y
"
]
std_dir_z
=
best_track
[
"
dir_z
"
]
std_beta0
=
best_track
[
"
JGANDALF_BETA0_RAD
"
]
std_lik
=
best_track
[
"
likelihood
"
]
std_n_hits_gandalf
=
best_track
[
"
JGANDALF_NUMBER_OF_HITS
"
]
else
:
std_dir_x
=
dummy_value
std_dir_y
=
dummy_value
std_dir_z
=
dummy_value
std_beta0
=
dummy_value
std_lik
=
dummy_value
std_n_hits_gandalf
=
dummy_value
#energy fit from JEnergy
if
4
in
rec_stages_best_track
:
std_energy
=
best_track
[
"
E
"
]
lik_energy
=
best_track
[
"
JENERGY_CHI2
"
]
else
:
std_energy
=
dummy_value
lik_energy
=
dummy_value
#vertex and length from JStart
if
5
in
rec_stages_best_track
:
std_pos_x
=
best_track
[
"
pos_x
"
]
std_pos_y
=
best_track
[
"
pos_y
"
]
std_pos_z
=
best_track
[
"
pos_z
"
]
std_length
=
best_track
[
"
JSTART_LENGTH_METRES
"
]
else
:
std_pos_x
=
dummy_value
std_pos_y
=
dummy_value
std_pos_z
=
dummy_value
std_length
=
dummy_value
std_reco_info
=
{
'
std_dir_x
'
:
std_dir_x
,
'
std_dir_y
'
:
std_dir_y
,
'
std_dir_z
'
:
std_dir_z
,
'
std_beta0
'
:
std_beta0
,
'
std_lik
'
:
std_lik
,
'
std_n_hits_gandalf
'
:
std_n_hits_gandalf
,
'
std_pos_x
'
:
std_pos_x
,
'
std_pos_y
'
:
std_pos_y
,
'
std_pos_z
'
:
std_pos_z
,
'
std_energy
'
:
std_energy
,
'
std_lik_energy
'
:
lik_energy
,
'
std_length
'
:
std_length
,
}
return
std_reco_info
"""
Function to extract std reco info. The implemented strategy is the following:
First, look for whether a rec stag has been reached and only then extract the reconstructed
paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with
exactly zero have to be filtered out!
The
'
best track
'
is the first (highest lik) while a certain rec stage has to be reached. This might
have to be adjusted for other recos than JMuonGandalf chain.
Members of the Tracks:
dtype([(
'
E
'
,
'
<f8
'
), (
'
JCOPY_Z_M
'
,
'
<f4
'
), (
'
JENERGY_CHI2
'
,
'
<f4
'
), (
'
JENERGY_ENERGY
'
,
'
<f4
'
),
(
'
JENERGY_MUON_RANGE_METRES
'
,
'
<f4
'
), (
'
JENERGY_NDF
'
,
'
<f4
'
), (
'
JENERGY_NOISE_LIKELIHOOD
'
,
'
<f4
'
),
(
'
JENERGY_NUMBER_OF_HITS
'
,
'
<f4
'
), (
'
JGANDALF_BETA0_RAD
'
,
'
<f4
'
), (
'
JGANDALF_BETA1_RAD
'
,
'
<f4
'
),
(
'
JGANDALF_CHI2
'
,
'
<f4
'
), (
'
JGANDALF_LAMBDA
'
,
'
<f4
'
), (
'
JGANDALF_NUMBER_OF_HITS
'
,
'
<f4
'
),
(
'
JGANDALF_NUMBER_OF_ITERATIONS
'
,
'
<f4
'
), (
'
JSHOWERFIT_ENERGY
'
,
'
<f4
'
), (
'
JSTART_LENGTH_METRES
'
,
'
<f4
'
),
(
'
JSTART_NPE_MIP
'
,
'
<f4
'
), (
'
JSTART_NPE_MIP_TOTAL
'
,
'
<f4
'
), (
'
JVETO_NPE
'
,
'
<f4
'
), (
'
JVETO_NUMBER_OF_HITS
'
,
'
<f4
'
),
(
'
dir_x
'
,
'
<f8
'
), (
'
dir_y
'
,
'
<f8
'
), (
'
dir_z
'
,
'
<f8
'
), (
'
id
'
,
'
<i4
'
), (
'
idx
'
,
'
<i8
'
), (
'
length
'
,
'
<f8
'
),
(
'
likelihood
'
,
'
<f8
'
), (
'
pos_x
'
,
'
<f8
'
), (
'
pos_y
'
,
'
<f8
'
), (
'
pos_z
'
,
'
<f8
'
), (
'
rec_type
'
,
'
<i4
'
),
(
'
t
'
,
'
<f8
'
), (
'
group_id
'
,
'
<i8
'
)])
members of rec stages:
.idx (corresponding to the track id),
.rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf,
4=engery, 5=start),
.group_id (event id in file)
Parameters
----------
blob : blob containing the reco info
Returns
-------
std_reco_info : dict
Dict with the most common std reco params. Can be expanded.
"""
# use this later to identify not reconstructed events
dummy_value
=
0
# if there was no std reco at all, this will not exist
# these are events that stopped at/before prefit
try
:
rec_stages
=
blob
[
"
RecStages
"
]
# get first track only
rec_stages_best_track
=
rec_stages
.
rec_stage
[
rec_stages
.
idx
==
0
]
# often enough: best track is the first
best_track
=
blob
[
"
Tracks
"
][
0
]
except
KeyError
:
rec_stages_best_track
=
[]
print
(
"
An event didnt have any reco. Setting everything to
"
+
str
(
dummy_value
)
+
"
.
"
)
# take the direction only if JGanalf was executed
if
3
in
rec_stages_best_track
:
std_dir_x
=
best_track
[
"
dir_x
"
]
std_dir_y
=
best_track
[
"
dir_y
"
]
std_dir_z
=
best_track
[
"
dir_z
"
]
std_beta0
=
best_track
[
"
JGANDALF_BETA0_RAD
"
]
std_lik
=
best_track
[
"
likelihood
"
]
std_n_hits_gandalf
=
best_track
[
"
JGANDALF_NUMBER_OF_HITS
"
]
else
:
std_dir_x
=
dummy_value
std_dir_y
=
dummy_value
std_dir_z
=
dummy_value
std_beta0
=
dummy_value
std_lik
=
dummy_value
std_n_hits_gandalf
=
dummy_value
# energy fit from JEnergy
if
4
in
rec_stages_best_track
:
std_energy
=
best_track
[
"
E
"
]
lik_energy
=
best_track
[
"
JENERGY_CHI2
"
]
else
:
std_energy
=
dummy_value
lik_energy
=
dummy_value
# vertex and length from JStart
if
5
in
rec_stages_best_track
:
std_pos_x
=
best_track
[
"
pos_x
"
]
std_pos_y
=
best_track
[
"
pos_y
"
]
std_pos_z
=
best_track
[
"
pos_z
"
]
std_length
=
best_track
[
"
JSTART_LENGTH_METRES
"
]
else
:
std_pos_x
=
dummy_value
std_pos_y
=
dummy_value
std_pos_z
=
dummy_value
std_length
=
dummy_value
std_reco_info
=
{
"
std_dir_x
"
:
std_dir_x
,
"
std_dir_y
"
:
std_dir_y
,
"
std_dir_z
"
:
std_dir_z
,
"
std_beta0
"
:
std_beta0
,
"
std_lik
"
:
std_lik
,
"
std_n_hits_gandalf
"
:
std_n_hits_gandalf
,
"
std_pos_x
"
:
std_pos_x
,
"
std_pos_y
"
:
std_pos_y
,
"
std_pos_z
"
:
std_pos_z
,
"
std_energy
"
:
std_energy
,
"
std_lik_energy
"
:
lik_energy
,
"
std_length
"
:
std_length
,
}
return
std_reco_info
def
get_real_data_info_extr
(
input_file
):
"""
Wrapper function that includes the actual mc_info_extr
for real data. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
#check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this real data case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info
=
blob
[
'
EventInfo
'
][
0
]
#add n_hits info for the cut
n_hits
=
len
(
blob
[
'
Hits
'
])
track
=
{
'
event_id
'
:
event_info
.
event_id
,
'
run_id
'
:
event_info
.
run_id
,
'
trigger_mask
'
:
event_info
.
trigger_mask
,
'
n_hits
'
:
n_hits
,
}
#get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
"""
Wrapper function that includes the actual mc_info_extr
for real data. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this real data case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info
=
blob
[
"
EventInfo
"
][
0
]
# add n_hits info for the cut
n_hits
=
len
(
blob
[
"
Hits
"
])
track
=
{
"
event_id
"
:
event_info
.
event_id
,
"
run_id
"
:
event_info
.
run_id
,
"
trigger_mask
"
:
event_info
.
trigger_mask
,
"
n_hits
"
:
n_hits
,
}
# get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
def
get_random_noise_mc_info_extr
(
input_file
):
"""
Wrapper function that includes the actual mc_info_extr
for random noise simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
#
check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this random noise case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info
=
blob
[
'
EventInfo
'
]
track
=
{
'
event_id
'
:
event_info
.
event_id
[
0
],
'
run_id
'
:
event_info
.
run_id
[
0
],
'
particle_type
'
:
0
,
}
#
get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
"""
Wrapper function that includes the actual mc_info_extr
for random noise simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
#
check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this random noise case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info
=
blob
[
"
EventInfo
"
]
track
=
{
"
event_id
"
:
event_info
.
event_id
[
0
],
"
run_id
"
:
event_info
.
run_id
[
0
],
"
particle_type
"
:
0
,
}
#
get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
def
get_neutrino_mc_info_extr
(
input_file
):
"""
Wrapper function that includes the actual mc_info_extr
for neutrino simulations. The n_gen parameter, needed for neutrino weighting
is extracted from the header of the file.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
#check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
#get the n_gen
header
=
HDF5Header
.
from_hdf5
(
input_file
)
n_gen
=
header
.
genvol
.
numberOfEvents
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this neutrino case it is the full mc info for the primary neutrino; there are the several
"
McTracks
"
:
check the simulation which index
"
p
"
the neutrino has.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
#get general info about the event
event_id
=
blob
[
'
EventInfo
'
].
event_id
[
0
]
run_id
=
blob
[
"
EventInfo
"
].
run_id
[
0
]
#weights for neutrino analysis
weight_w1
=
blob
[
"
EventInfo
"
].
weight_w1
[
0
]
weight_w2
=
blob
[
"
EventInfo
"
].
weight_w2
[
0
]
weight_w3
=
blob
[
"
EventInfo
"
].
weight_w3
[
0
]
# first, look for the particular neutrino index of the production
p
=
0
#for ORCA4 (and probably subsequent productions)
mc_track
=
blob
[
'
McTracks
'
][
p
]
#some track mc truth info
particle_type
=
mc_track
.
type
energy
=
mc_track
.
energy
is_cc
=
mc_track
.
cc
bjorkeny
=
mc_track
.
by
dir_x
,
dir_y
,
dir_z
=
mc_track
.
dir_x
,
mc_track
.
dir_y
,
mc_track
.
dir_z
time_interaction
=
mc_track
.
time
# actually always 0 for primary neutrino, measured in MC time
vertex_pos_x
,
vertex_pos_y
,
vertex_pos_z
=
mc_track
.
pos_x
,
mc_track
.
pos_y
,
mc_track
.
pos_z
#add also the nhits info
n_hits
=
len
(
blob
[
'
Hits
'
])
track
=
{
'
event_id
'
:
event_id
,
'
particle_type
'
:
particle_type
,
'
energy
'
:
energy
,
'
is_cc
'
:
is_cc
,
'
bjorkeny
'
:
bjorkeny
,
'
dir_x
'
:
dir_x
,
'
dir_y
'
:
dir_y
,
'
dir_z
'
:
dir_z
,
'
time_interaction
'
:
time_interaction
,
'
run_id
'
:
run_id
,
'
vertex_pos_x
'
:
vertex_pos_x
,
'
vertex_pos_y
'
:
vertex_pos_y
,
'
vertex_pos_z
'
:
vertex_pos_z
,
'
n_hits
'
:
n_hits
,
'
weight_w1
'
:
weight_w1
,
'
weight_w2
'
:
weight_w2
,
'
weight_w3
'
:
weight_w3
,
'
n_gen
'
:
n_gen
,
}
print
(
is_cc
)
#get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
"""
Wrapper function that includes the actual mc_info_extr
for neutrino simulations. The n_gen parameter, needed for neutrino weighting
is extracted from the header of the file.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
# get the n_gen
header
=
HDF5Header
.
from_hdf5
(
input_file
)
n_gen
=
header
.
genvol
.
numberOfEvents
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this neutrino case it is the full mc info for the primary neutrino; there are the several
"
McTracks
"
:
check the simulation which index
"
p
"
the neutrino has.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
# get general info about the event
event_id
=
blob
[
"
EventInfo
"
].
event_id
[
0
]
run_id
=
blob
[
"
EventInfo
"
].
run_id
[
0
]
# weights for neutrino analysis
weight_w1
=
blob
[
"
EventInfo
"
].
weight_w1
[
0
]
weight_w2
=
blob
[
"
EventInfo
"
].
weight_w2
[
0
]
weight_w3
=
blob
[
"
EventInfo
"
].
weight_w3
[
0
]
# first, look for the particular neutrino index of the production
p
=
0
# for ORCA4 (and probably subsequent productions)
mc_track
=
blob
[
"
McTracks
"
][
p
]
# some track mc truth info
particle_type
=
mc_track
.
type
energy
=
mc_track
.
energy
is_cc
=
mc_track
.
cc
bjorkeny
=
mc_track
.
by
dir_x
,
dir_y
,
dir_z
=
mc_track
.
dir_x
,
mc_track
.
dir_y
,
mc_track
.
dir_z
time_interaction
=
(
mc_track
.
time
)
# actually always 0 for primary neutrino, measured in MC time
vertex_pos_x
,
vertex_pos_y
,
vertex_pos_z
=
(
mc_track
.
pos_x
,
mc_track
.
pos_y
,
mc_track
.
pos_z
,
)
# add also the nhits info
n_hits
=
len
(
blob
[
"
Hits
"
])
track
=
{
"
event_id
"
:
event_id
,
"
particle_type
"
:
particle_type
,
"
energy
"
:
energy
,
"
is_cc
"
:
is_cc
,
"
bjorkeny
"
:
bjorkeny
,
"
dir_x
"
:
dir_x
,
"
dir_y
"
:
dir_y
,
"
dir_z
"
:
dir_z
,
"
time_interaction
"
:
time_interaction
,
"
run_id
"
:
run_id
,
"
vertex_pos_x
"
:
vertex_pos_x
,
"
vertex_pos_y
"
:
vertex_pos_y
,
"
vertex_pos_z
"
:
vertex_pos_z
,
"
n_hits
"
:
n_hits
,
"
weight_w1
"
:
weight_w1
,
"
weight_w2
"
:
weight_w2
,
"
weight_w3
"
:
weight_w3
,
"
n_gen
"
:
n_gen
,
}
print
(
is_cc
)
# get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
def
get_muon_mc_info_extr
(
input_file
):
"""
Wrapper function that includes the actual mc_info_extr
for atm. muon simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
#check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
#no n_gen here, but needed for concatenation
n_gen
=
1
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this atm. muon case it is the full mc info for the primary; there are the several
"
McTracks
"
:
check the simulation to understand what
"
p
"
you want. Muons come in bundles that have the same direction.
For energy: sum of all muons in a bundle,
for vertex: weighted (energy) mean of the individual vertices .
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_id
=
blob
[
'
EventInfo
'
].
event_id
[
0
]
run_id
=
blob
[
"
EventInfo
"
].
run_id
[
0
]
p
=
0
#for ORCA4 (and probably subsequent productions)
mc_track
=
blob
[
'
McTracks
'
][
p
]
particle_type
=
mc_track
.
type
# assumed that this is the same for all muons in a bundle
is_cc
=
mc_track
.
cc
# always 0 actually
bjorkeny
=
mc_track
.
by
time_interaction
=
mc_track
.
time
# same for all muons in a bundle
# sum up the energy of all muons
energy
=
np
.
sum
(
blob
[
'
McTracks
'
].
energy
)
# all muons in a bundle are parallel, so just take dir of first muon
dir_x
,
dir_y
,
dir_z
=
mc_track
.
dir_x
,
mc_track
.
dir_y
,
mc_track
.
dir_z
# vertex is the weighted (energy) mean of the individual vertices
vertex_pos_x
=
np
.
average
(
blob
[
'
McTracks
'
][
p
:].
pos_x
,
weights
=
blob
[
'
McTracks
'
][
p
:].
energy
)
vertex_pos_y
=
np
.
average
(
blob
[
'
McTracks
'
][
p
:].
pos_y
,
weights
=
blob
[
'
McTracks
'
][
p
:].
energy
)
vertex_pos_z
=
np
.
average
(
blob
[
'
McTracks
'
][
p
:].
pos_z
,
weights
=
blob
[
'
McTracks
'
][
p
:].
energy
)
#add also the nhits info
n_hits
=
len
(
blob
[
'
Hits
'
])
#this is only relevant for neutrinos, though dummy info is needed for the concatenation
weight_w1
=
10
weight_w2
=
10
weight_w3
=
10
track
=
{
'
event_id
'
:
event_id
,
'
particle_type
'
:
particle_type
,
'
energy
'
:
energy
,
'
is_cc
'
:
is_cc
,
'
bjorkeny
'
:
bjorkeny
,
'
dir_x
'
:
dir_x
,
'
dir_y
'
:
dir_y
,
'
dir_z
'
:
dir_z
,
'
time_interaction
'
:
time_interaction
,
'
run_id
'
:
run_id
,
'
vertex_pos_x
'
:
vertex_pos_x
,
'
vertex_pos_y
'
:
vertex_pos_y
,
'
vertex_pos_z
'
:
vertex_pos_z
,
'
n_hits
'
:
n_hits
,
'
weight_w1
'
:
weight_w1
,
'
weight_w2
'
:
weight_w2
,
'
weight_w3
'
:
weight_w3
,
'
n_gen
'
:
n_gen
,
}
#get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
"""
Wrapper function that includes the actual mc_info_extr
for atm. muon simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f
=
File
(
input_file
,
"
r
"
)
has_std_reco
=
"
reco
"
in
f
.
keys
()
# no n_gen here, but needed for concatenation
n_gen
=
1
def
mc_info_extr
(
blob
):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this atm. muon case it is the full mc info for the primary; there are the several
"
McTracks
"
:
check the simulation to understand what
"
p
"
you want. Muons come in bundles that have the same direction.
For energy: sum of all muons in a bundle,
for vertex: weighted (energy) mean of the individual vertices .
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_id
=
blob
[
"
EventInfo
"
].
event_id
[
0
]
run_id
=
blob
[
"
EventInfo
"
].
run_id
[
0
]
p
=
0
# for ORCA4 (and probably subsequent productions)
mc_track
=
blob
[
"
McTracks
"
][
p
]
particle_type
=
(
mc_track
.
type
)
# assumed that this is the same for all muons in a bundle
is_cc
=
mc_track
.
cc
# always 0 actually
bjorkeny
=
mc_track
.
by
time_interaction
=
mc_track
.
time
# same for all muons in a bundle
# sum up the energy of all muons
energy
=
np
.
sum
(
blob
[
"
McTracks
"
].
energy
)
# all muons in a bundle are parallel, so just take dir of first muon
dir_x
,
dir_y
,
dir_z
=
mc_track
.
dir_x
,
mc_track
.
dir_y
,
mc_track
.
dir_z
# vertex is the weighted (energy) mean of the individual vertices
vertex_pos_x
=
np
.
average
(
blob
[
"
McTracks
"
][
p
:].
pos_x
,
weights
=
blob
[
"
McTracks
"
][
p
:].
energy
)
vertex_pos_y
=
np
.
average
(
blob
[
"
McTracks
"
][
p
:].
pos_y
,
weights
=
blob
[
"
McTracks
"
][
p
:].
energy
)
vertex_pos_z
=
np
.
average
(
blob
[
"
McTracks
"
][
p
:].
pos_z
,
weights
=
blob
[
"
McTracks
"
][
p
:].
energy
)
# add also the nhits info
n_hits
=
len
(
blob
[
"
Hits
"
])
# this is only relevant for neutrinos, though dummy info is needed for the concatenation
weight_w1
=
10
weight_w2
=
10
weight_w3
=
10
track
=
{
"
event_id
"
:
event_id
,
"
particle_type
"
:
particle_type
,
"
energy
"
:
energy
,
"
is_cc
"
:
is_cc
,
"
bjorkeny
"
:
bjorkeny
,
"
dir_x
"
:
dir_x
,
"
dir_y
"
:
dir_y
,
"
dir_z
"
:
dir_z
,
"
time_interaction
"
:
time_interaction
,
"
run_id
"
:
run_id
,
"
vertex_pos_x
"
:
vertex_pos_x
,
"
vertex_pos_y
"
:
vertex_pos_y
,
"
vertex_pos_z
"
:
vertex_pos_z
,
"
n_hits
"
:
n_hits
,
"
weight_w1
"
:
weight_w1
,
"
weight_w2
"
:
weight_w2
,
"
weight_w3
"
:
weight_w3
,
"
n_gen
"
:
n_gen
,
}
# get all the std reco info
if
has_std_reco
:
std_reco_info
=
get_std_reco
(
blob
)
track
.
update
(
std_reco_info
)
return
track
return
mc_info_extr
Loading