Skip to content
Snippets Groups Projects

Mean cross section

Merged Johannes Schumann requested to merge xsec-mean into master
1 file
+ 29
1
Compare changes
  • Side-by-side
  • Inline
+ 29
1
@@ -20,7 +20,7 @@ from os.path import isfile, join, abspath
from tempfile import TemporaryDirectory
import awkward as ak
import uproot
from scipy.interpolate import UnivariateSpline
from scipy.interpolate import UnivariateSpline, interp1d
from scipy.spatial.transform import Rotation
import scipy.constants as constants
import mendeleev
@@ -208,6 +208,34 @@ class GiBUUOutput:
xsec = np.divide(total_events * weights, n_files)
return xsec
@property
def mean_xsec(self):
root_tupledata = self.arrays
energies = np.array(root_tupledata.lepIn_E)
weights = self._event_xsec(root_tupledata)
Emin = np.min(energies)
Emax = np.max(energies)
xsec, energy_bins = np.histogram(energies,
weights=weights,
bins=np.logspace(
np.log10(Emin), np.log10(Emax),
15))
deltaE = np.mean(self.flux_data["energy"][1:] -
self.flux_data["energy"][:-1])
bin_events = np.array([
self.flux_interpolation.integral(energy_bins[i],
energy_bins[i + 1]) / deltaE
for i in range(len(energy_bins) - 1)
])
x = (energy_bins[1:] + energy_bins[:-1]) / 2
y = xsec / bin_events / x
xsec_interp = interp1d(x,
y,
kind="linear",
fill_value=(y[0], y[-1]),
bounds_error=False)
return lambda e: xsec_interp(e) * e
def w2weights(self, volume, target_density, solid_angle):
"""
Calculate w2weights
Loading