Skip to content
Snippets Groups Projects
test_extractor.py 4.14 KiB
Newer Older
import os
from unittest import TestCase
import tempfile
import numpy as np
import h5py
import orcasong.core
import orcasong.extractors as extractors


__author__ = "Daniel Guderian"


test_dir = os.path.dirname(os.path.realpath(__file__))
NEUTRINO_FILE = os.path.join(
    test_dir,
    "data",
    "mcv6.0.gsg_anti-muon-NC_1-500GeV.km3sim.jterbr00008350.jorcarec.jsh.aanet.898.root.h5",
)
Daniel Guderian's avatar
Daniel Guderian committed
DET_FILE_NEUTRINO = os.path.join(test_dir, "data", "KM3NeT_00000049_20200707.detx")
NOT_FULLY_RECONSTRUCTED_FILE = os.path.join(
    test_dir,
    "data",
    "mcv6.0.gsg_anti-muon-NC_1-500GeV.km3sim.jterbr00008349.jorcarec.jsh.aanet.897.root.h5",
)
Daniel Guderian's avatar
Daniel Guderian committed
    """ Assert that the neutrino info is extracted correctly. File has 18 events. """
        cls.proc = orcasong.core.FileGraph(
            max_n_hits=3,
            time_window=[0, 50],
            hit_infos=["pos_z", "time", "channel_id"],
Daniel Guderian's avatar
Daniel Guderian committed
            extractor=extractors.get_neutrino_mc_info_extr(NEUTRINO_FILE,1),
Stefan Reck's avatar
Stefan Reck committed
            keep_event_info=True,
Stefan Reck's avatar
Stefan Reck committed
            fixed_length=True,
        )
        cls.tmpdir = tempfile.TemporaryDirectory()
        cls.outfile = os.path.join(cls.tmpdir.name, "binned.h5")
        cls.proc.run(infile=NEUTRINO_FILE, outfile=cls.outfile)
        cls.f = h5py.File(cls.outfile, "r")
        cls.reco_names_in_original_file = ["best_jshower", "best_jmuon"]
        cls.reco_names = ["jshower", "jmuon"]
        cls.quantities_to_test = ["dir_z", "dir_x", "pos_x"]
        cls.mc_quantities_to_test = ["dir_z", "dir_x", "vertex_pos_x"]

        # case where a few recos from jmuon are missing
        cls.proc = orcasong.core.FileGraph(
            max_n_hits=3,
            time_window=[0, 50],
            hit_infos=["pos_z", "time", "channel_id"],
            extractor=extractors.get_neutrino_mc_info_extr(
Daniel Guderian's avatar
Daniel Guderian committed
                NOT_FULLY_RECONSTRUCTED_FILE,1
            add_t0=True,
            keep_event_info=True,
Stefan Reck's avatar
Stefan Reck committed
            fixed_length=True,
        cls.outfile_not_fully_rec = os.path.join(
            cls.tmpdir.name, "binned_not_fully_rec.h5"
        )
        cls.proc.run(
            infile=NOT_FULLY_RECONSTRUCTED_FILE, outfile=cls.outfile_not_fully_rec
        )
        cls.f_not_fully_rec_original = h5py.File(cls.outfile_not_fully_rec, "r")
    @classmethod
    def tearDownClass(cls):
        cls.f.close()
        cls.tmpdir.cleanup()

    def test_keys(self):
        self.assertSetEqual(
            set(self.f.keys()),
            {
                "_i_event_info",
                "_i_group_info",
                "_i_y",
                "event_info",
                "group_info",
                "x",
                "x_indices",
                "y",
            },
        )

Daniel Guderian's avatar
Daniel Guderian committed
    def test_y_contents(self):

        # the info from the original file
        orig_info = h5py.File(NEUTRINO_FILE, "r")

Daniel Guderian's avatar
Daniel Guderian committed
        orig_reco_info = orig_info["reco"]
        orig_mc_info = orig_info["mc_tracks"]
Daniel Guderian's avatar
Daniel Guderian committed
        for i in range(len(self.reco_names_in_original_file)):
            for j in self.quantities_to_test:
                orig_reco_values = orig_reco_info[self.reco_names_in_original_file[i]][
                    j
                ]

                assert np.allclose(
                    orig_reco_values, y[self.reco_names[i] + "_" + j], equal_nan=True
                )

        # test a few mc truth parameter
Daniel Guderian's avatar
Daniel Guderian committed
        for j in range(len(self.quantities_to_test)):
            orig_mc_values = orig_mc_info[self.quantities_to_test[j]][
                0
            ]  # only take fist, the primary

            assert np.allclose(
                orig_mc_values, y[self.mc_quantities_to_test[j]][0], equal_nan=True
            )

    def test_incomplete_reco_padding(self):

        # make sure the x and y even in this case have the same length
        x = self.f_not_fully_rec_original["x"]
        y = self.f_not_fully_rec_original["y"]

        assert len(x) == len(y)