@@ -11,8 +11,8 @@ A key technology of the KM3NeT detectors is the Digital Optical Module (DOM), a
A collection of 115 strings forms a single KM3NeT building block. The modular design allows building blocks with different spacings between strings/DOMs, in order to target different neutrino energies. In the KM3NeT Phase-2.0, three building blocks are foreseen: two KM3NeT/ARCA blocks, with a large spacing to target astrophysical neutrinos at TeV energies and above; and one KM3NeT/ORCA block, to target atmospheric neutrinos in the few-GeV range.
The ARCA (Astroparticle Research with Cosmics in the Abyss) detector is being installed at the KM3NeT-It site, 80km offshore the Sicilian coast offshore to Capo Passero (Italy) at a sea bottom depth of about 3450m. About 1 km^3 of seawater will be instrumented with ∼130,000PMTs. The geometry of ARCA is optimised to maximise its detection efficiency in the neutrino energy range 1TeV–10PeV.
The ORCA (Oscillation Research with Cosmics in the Abyss) detector is being installed at the KM3NeT-Fr site, 40km offshore Toulon (France) at a sea bottom depth of about 2450m. A volume of about 8 Mton is instrumented with ∼65,000PMTs. The geometry of ORCA is optimised for measuring atmospheric neutrinos in the few-GeV range.
The ARCA (Astroparticle Research with Cosmics in the Abyss) detector is being installed at the KM3NeT-It site, 80km offshore the Sicilian coast offshore to Capo Passero (Italy) at a sea bottom depth of about 3450m. About 1 km^3 of seawater will be instrumented with ∼130,000PMTs.
The ORCA (Oscillation Research with Cosmics in the Abyss) detector is being installed at the KM3NeT-Fr site, 40km offshore Toulon (France) at a sea bottom depth of about 2450m. A volume of about 8 Mton is instrumented with ∼65,000PMTs.
Technical details on the detector design are given in [1].