Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
km3dia_exploration
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Thijs vanEeden
km3dia_exploration
Commits
861be23e
Commit
861be23e
authored
3 years ago
by
Thijs vanEeden
Browse files
Options
Downloads
Patches
Plain Diff
make plot for maarten
parent
d8e9a2ae
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
+43
-5
43 additions, 5 deletions
.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
pmt_gain.ipynb
+43
-5
43 additions, 5 deletions
pmt_gain.ipynb
with
86 additions
and
10 deletions
.ipynb_checkpoints/pmt_gain-checkpoint.ipynb
+
43
−
5
View file @
861be23e
...
...
@@ -196,7 +196,7 @@
},
{
"cell_type": "code",
"execution_count": 2
0
1,
"execution_count": 21
5
,
"id": "4eaed37c-3cae-44ef-88db-fac0ce64acbf",
"metadata": {},
"outputs": [
...
...
@@ -206,7 +206,7 @@
"Text(0.5, 1.0, 'Location: Amsterdam')"
]
},
"execution_count": 2
0
1,
"execution_count": 21
5
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -260,11 +260,49 @@
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
273
,
"id": "ca1f27e5-fecb-42d5-8e17-dd58da923f08",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')"
]
},
"execution_count": 273,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkFElEQVR4nO3dfZwdZXn/8c/X8Gh4WBBcIQEWNVCBYCwrULV0LQiBVhG1EKSQCBqtUItNbdH6Eyql0iqioIJRELDIQ3mQCChEyhGfEALEJDxJgPAjaSQKJGEBqcGrf8x9yLDsnjl79pyZXfb7fr3mtTP33DNzzb3nnOvMPXNmFBGYmZk18oqqAzAzs9HPycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwGyMkhaTXD3OZWZJ+0qmYbPxwsrBCkpZJ+l9J2wwovyt9gPVUFFo9jo0kXZHiDEl9DepuLOk8SY9IekrSQkkHD6jzQUlLJfVL+oGk7XPzuiRdKGlVGk5p0z4MOxGMJpL2l3SfpGck3SxppyHqvVrSJZL+R9IaST+VtM8Qdc8f2C7pf5Ifnpd0dqf2y9ZzsrBmPQwcWZ+QNBV4ZXXhvMRPgL8Gfl1QbwPgUeDPgC2BTwOX1xNeSjT/BhwKbE2235fklj+TbL97gL2BoyV9oD27MDalLxFXAf+PrM0WAJcNUX0z4HZgr1T3QuA6SZsNWOfbgNcNXDgiNqsPwGuAZ4H/atOuWCMR4cFDwwFYRvahenuu7AvAPwMB9KSyjVP5/wceA84FNk3ztgKuBX4DPJnGJ+fWVwNOBX4KPAXcCGzTQqzLgb5hLrMIeG9uv76am7d92sfXpenfAm/Ozf8U8OMmt/N64EfAmrSey1L5LWkbTwP9wBGp/BPASuB/gGNTndcXbONVwDxgLXBbatOf5Ob/ETAfeAK4Hzg8le9Dlmgn5OoeBixqYr9mAz/LTU8k+xD/oybbZS2wV256A+AuYM9G+wzMBB4CVPV7ZDwMPrKwZt0KbCHpDZImADOA/xxQ53RgF2Aa2QfjJOAzad4rgG8BOwE7kn2YfGXA8u8HPgC8GtgI+If6DEmLJL2/jftTX293ivnufPEg43s0mJ+f18ipZElwK2AycDZAROyX5r8xsm/Nl0maTrb/7wCmAAc0uY2vAr8DtiNLMMe+EKg0kSxRfIesjWcAX5O0W0T8gixZ/XluXe9PdYvaf3fgl/WJiHgaeDCVNyRpGtn/emmu+OPALRGxqGDxmcBFkTKHdZaThQ3Ht4FjyD7A7gVW1GdIEtk3zI9HxBMR8RRZd84MgIh4PCKujIhn0rzTyLqC8r4VEb+KiGeBy8mSDmn5PSPiO+3cGUkbAhcDF0bEfan4B8DhkvaUtClZsgvWd7n9ADhJ0uapL/1Ymu+O+z1Zstw+In4XEY1OPB9O1h5L0ofvKU3szwTgvcBnIuLpiFhC1s1T95fAsoj4VkSsi4i7gCuBv0rzLyF1NUraHDgklRW1/2ZkR0t5a4DNC+Ldguw19S8RsSaV7QB8mPVfMoZadiey18+FjepZ+zhZ2HB8m+zb5izgogHztiX70LxD0mpJq8k+WLcFkPRKSV9PJ5bXknW9dKUPuLr8+YZnyD6EOkLSK8j253+BE+rlEfFD4GSyD9FlaXiKrHsL4GNkR0UPANeQfZjW5xX5R7Ijkdsk3S3p2AZ1tyc7t1L3SBPr35b152QGW24nYJ/6/yf9j44i6/uH7CjiPZI2Bt4D3BkRzWy3H9hiQNkWZO02qJSIvwfcGhGfy836EvDZevJo4Giy7rWHm4jP2sDJwpqWPjgeJvvGedWA2b8l+xDdPSK60rBlZCciAeYAuwL7RMQWQL3rRZQsHQWdB3STnav4fX5+RHw1IqZERDdZ0tgAWJLmPRERR0XEayJid7L30G3NbDcifh0RH4qI7cm+PX+twRVQK4EdctM7NrGJ3wDrGiz3KPCj3P+nK3V7/U2K7x6y5HIwuS6oJtwNvLE+kbq7XseLu/bIzd8Y+C5Zkv3wgNn7A5+X9GtJ9S8PPx+kC+wYfFRRKicLG67jgD9PXSMviIg/AN8AzpT0agBJkyQdlKpsTpZMVkvamuzbe9ukS2I3SZMbSdokJYXBnAO8AXhn6vLKr2cTSXsosyMwF/hyRDyZ5r9O0qskTUiX3M4G/jW3fG2oy2kl/ZWkyWnySbLurT+k6ceA1+aqXw7MkrSbpFfSRHtFxPNkSfyUdCS3G1m/ft21wC6Sjpa0YRreLOkNuTrfAf6OLJk3e5XR1cAekt6b/gefITsxft/Aiqnr7wqy18LM9LrJ24Us8UxjfTfkO9M26ut4C9n5MF8FVaaqz7B7GP0DWVfMAYOUb8CLr4bahOw8xUNkV7jcC3wszdue7IqnfuBXZN8oA9ggza8BH8ytexYvvornbuCoghhjwFCP61PA99P4Tmne71Is9eGoNL+L7Oqop8m6xT7Hi68QOpzs6qRngIXAQQPieBB4xxAx/gfZeZ7+VG92bt5HyI4mVrP+CqWTUgzDuRpqW7KkMNTVULsC15EdhTwO/DcwLTd/R7IEdt2A9Ra1/wHAfWRJoFZv+zTvXODcNP5naT+eGdD+fzrEel+yz8DXgW9X/b4Yb4NS45vZCKWjhssj4i1Vx2LWbk4WZmZWyOcszMaYdCXVwNte9Es6qurY7OXLRxZmZlZog6oD6JRtttkmenp6St3m008/zcSJE0vd5ljjNmrM7VPMbdTYSNrnjjvu+G1EbDvYvJdtsujp6WHBggWlbrNWq9HX11fqNscat1Fjbp9ibqPGRtI+kob8EabPWZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWaGO/YI7PUv3IrKnkQUwNyK+nB58cxnQQ/YMgsMj4sn0oJovkz2F7RlgVkTcmdY1E/h0WvW/RoSfkGXWJj0nXdfysstO/4s2RmKjWSePLNYBcyJiN2Bf4Pj05K6TgJsiYgpwU5qG7FGOU9Iwm+xpZuSeqrYPsDdwsqStOhi3mZkN0LFkEREr60cGEfEU2VPTJgGHsv7ZuRcC707jhwIXReZWoEvSdsBBwPzInn38JDAfmN6puM3M7KVKuZGgpB7gTcAvgO6IWJlm/ZqsmwqyRPJobrHlqWyo8sG2M5vsqITu7m5qtVp7dqBJ/f39pW9zrHEbNVZF+8yZuq7lZav4X/o11Fin2qfjyULSZsCVwIkRsTY7NZGJiJDUtgdqRMRcYC5Ab29vlH1nSt8Ns5jbqLEq2mfWSM5ZHNXXvkCa5NdQY51qn45eDSVpQ7JEcXFEXJWKH0vdS6S/q1L5CmCH3OKTU9lQ5WZmVpKOJYt0ddN5wL0R8cXcrHnAzDQ+E7gmV36MMvsCa1J31Q3AgZK2Sie2D0xlZmZWkk52Q70VOBpYLGlhKvsUcDpwuaTjgEeAw9O868kum11KdunsBwAi4glJpwK3p3qfjYgnOhi3mZkN0LFkERE/ATTE7P0HqR/A8UOs63zg/PZFZ2Zmw+FfcJuZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhUp5+JGZvTy1+vxuP7t77PGRhZmZFXKyMDOzQk4WZmZWyMnCzMwKdfKxqudLWiVpSa7sMkkL07Cs/gQ9ST2Sns3NOze3zF6SFktaKums9LhWMzMrUSevhroA+ApwUb0gIo6oj0s6A1iTq/9gREwbZD3nAB8CfkH26NXpwPfbH66ZmQ2lY0cWEXELMOizstPRweHAJY3WIWk7YIuIuDU9dvUi4N1tDtXMzApU9TuLPwUei4gHcmU7S7oLWAt8OiJ+DEwClufqLE9lg5I0G5gN0N3dTa1Wa3fcDfX395e+zbHGbdRYFe0zZ+q6UrcHjGgf/RpqrFPtU1WyOJIXH1WsBHaMiMcl7QV8V9Luw11pRMwF5gL09vZGX19fO2JtWq1Wo+xtjjVuo8aqaJ9ZLf6wbiSWHdXX8rJ+DTXWqfYpPVlI2gB4D7BXvSwingOeS+N3SHoQ2AVYAUzOLT45lZmZWYmquHT2AOC+iHihe0nStpImpPHXAlOAhyJiJbBW0r7pPMcxwDUVxGxmNq518tLZS4CfA7tKWi7puDRrBi89sb0fsChdSnsF8JGIqJ8c/yjwTWAp8CC+EsrMrHQd64aKiCOHKJ81SNmVwJVD1F8A7NHW4MzMbFj8C24zMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvUyceqni9plaQlubJTJK2QtDANh+TmfVLSUkn3SzooVz49lS2VdFKn4jUzs6F18sjiAmD6IOVnRsS0NFwPIGk3smdz756W+ZqkCZImAF8FDgZ2A45Mdc3MrESdfAb3LZJ6mqx+KHBpRDwHPCxpKbB3mrc0Ih4CkHRpqntPu+Mdd048Mfv7pS9VGYXZ6Of3CtDBZNHACZKOARYAcyLiSWAScGuuzvJUBvDogPJ9hlqxpNnAbIDu7m5qtVobwy7W399f+jZbNS3FudBtNKpU0T5zpq4rdXvAiPax7Daq6r3Sqk61T9nJ4hzgVCDS3zOAY9u18oiYC8wF6O3tjb6+vnatuim1Wo2yt9myri6A0uMdU21UgZG0T89J17W41fK/My47qq/lZUt/DVX0XmlVp9qn1FdJRDxWH5f0DeDaNLkC2CFXdXIqo0G5mZmVpNRLZyVtl5s8DKhfKTUPmCFpY0k7A1OA24DbgSmSdpa0EdlJ8HllxmxmZh08spB0CdAHbCNpOXAy0CdpGlk31DLgwwARcbeky8lOXK8Djo+I59N6TgBuACYA50fE3Z2K2czMBtfJq6GOHKT4vAb1TwNOG6T8euD6NoZmZhVr/fwKXDB9YhsjsWb5F9xmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCHUsWks6XtErSklzZ5yXdJ2mRpKsldaXyHknPSlqYhnNzy+wlabGkpZLOkqROxWxmZoPr5JHFBcD0AWXzgT0iYk/gV8Anc/MejIhpafhIrvwc4ENkz+WeMsg6zcyswzqWLCLiFuCJAWU3RsS6NHkrMLnROiRtB2wREbdGRAAXAe/uQLhmZtZAx57B3YRjgcty0ztLugtYC3w6In4MTAKW5+osT2WDkjQbmA3Q3d1NrVZrd8wN9ff3l77NVk1bvRqAhW6jUWUk7TNn6rriSi8DZb+GqnqvtKpT7VNJspD0z8A64OJUtBLYMSIel7QX8F1Juw93vRExF5gL0NvbG319fW2KuDm1Wo2yt9myri6A0uMdU21UgZG0z6yTrmtvMKPUBdMnlvsaqui90qpOvcdKTxaSZgF/CeyfupaIiOeA59L4HZIeBHYBVvDirqrJqczMzEpU6qWzkqYD/wi8KyKeyZVvK2lCGn8t2YnshyJiJbBW0r7pKqhjgGvKjNnMzFpIFpK2krRnE/UuAX4O7CppuaTjgK8AmwPzB1wiux+wSNJC4ArgIxFRPzn+UeCbwFLgQeD7w43ZzMxGpqluKEk14F2p/h3AKkk/jYi/H2qZiDhykOLzhqh7JXDlEPMWAHs0E6eZmXVGs0cWW0bEWuA9wEURsQ9wQOfCMjOz0aTZZLFB+s3D4cC1HYzHzMxGoWaTxb8ANwBLI+L2dBL6gc6FZWZmo0mzl86uTLfoACAiHpL0xQ7FZGZmo0yzRxZnN1lmZmYvQw2PLCT9CfAWYFtJ+SuftgAmdDIwMzMbPYq6oTYCNkv1Ns+VrwXe16mgzMxsdGmYLCLiR8CPJF0QEY+UFJOZmY0yzZ7g3ljSXKAnv0xE/HkngjIzs9Gl2WTxX8C5ZLfdeL5z4ZiZ2WjUbLJYFxHndDQSMzMbtZq9dPZ7kj4qaTtJW9eHjkZmZmajRrNHFjPT30/kygJ4bXvDMTOz0aipZBERO3c6EDMzG72avUX5MYOVR8RF7Q3HzMxGo2a7od6cG98E2B+4E3CyMDMbB5rthvrb/LSkLuDSTgRkZmajT6vP4H4aKDyPIel8SaskLcmVbS1pvqQH0t+tUrkknSVpqaRFkv44t8zMVP8BSTMH25aZmXVOU8lC0vckzUvDdcD9wNVNLHoBMH1A2UnATRExBbgpTQMcDExJw2zgnLTtrYGTgX2AvYGT6wnGzMzK0ew5iy/kxtcBj0TE8qKFIuIWST0Dig8F+tL4hUAN+KdUflFEBHCrpK70dL4+YH5EPAEgaT5ZArqkydjNzGyEmj1n8SNJ3aw/0T2Sp+R1R8TKNP5roDuNTwIezdVbnsqGKn8JSbPJjkro7u6mVquNIMzh6+/vL32brZq2ejUAC91Go8pI2mfO1HXtDWaUKvs1VNV7pVWdap9mL509HPg82VGAgLMlfSIirhjJxiMiJMVI1jFgfXOBuQC9vb3R19fXrlU3pVarUfY2W9bVBVB6vGOqjSowkvaZddJ17Q1mlLpg+sRyX0MVvVda1an3WLPdUP8MvDkiVgFI2hb4IdBKsnhM0nYRsTJ1M61K5SuAHXL1JqeyFazvtqqX11rYrpmZtajZq6FeUU8UyePDWHageay/fchM4Jpc+THpqqh9gTWpu+oG4EBJW6UT2wemMjMzK0mzRxY/kHQD608qHwFcX7SQpEvIjgq2kbSc7Kqm04HLJR0HPAIcnqpfDxwCLAWeAT4AEBFPSDoVuD3V+2z9ZLeZmZWj6Bncryc7If0JSe8B3pZm/Ry4uGjlEXHkELP2H6RuAMcPsZ7zgfOLtmdmZp1RdGTxJeCTABFxFXAVgKSpad47OxibmZmNEkXnHbojYvHAwlTW05GIzMxs1ClKFl0N5m3axjjMzGwUK0oWCyR9aGChpA8Cd3QmJDMzG22KzlmcCFwt6SjWJ4deYCPgsA7GZWZmo0jDZBERjwFvkfR2YI9UfF1E/HfHIzMzG8TiFWta+rX6stP/ogPRjB/N3hvqZuDmDsdiZmajVKu/wjYzs3Gk2V9wm1kJWu1iMes0H1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWqPRkIWlXSQtzw1pJJ0o6RdKKXPkhuWU+KWmppPslHVR2zGZm413pP8qLiPuBaQCSJgArgKvJHqN6ZkR8IV9f0m7ADGB3YHvgh5J2iYjny4zbzGw8q7oban/gwYh4pEGdQ4FLI+K5iHiY7Bnde5cSnZmZAdXf7mMGcElu+gRJxwALgDkR8SQwCbg1V2d5KnsJSbOB2QDd3d3UarVOxDyk/v7+0rfZqmmrVwOw0G00qnRvCnOmrqs6jFGt1TZq9XVX1XulVZ16j1WWLCRtBLyL9Ixv4BzgVCDS3zOAY4ezzoiYC8wF6O3tjb6+vnaF25RarUbZ22xZVxdA6fGOqTaqwNkXX8MZi6v+Dje6zZm6rqU2WnZUX2sbrOi90qpOvceq7IY6GLgzPTODiHgsIp6PiD8A32B9V9MKYIfccpNTmZmZlaTKZHEkuS4oSdvl5h0GLEnj84AZkjaWtDMwBbittCjNzKyabihJE4F3AB/OFf+HpGlk3VDL6vMi4m5JlwP3AOuA430llJlZuSpJFhHxNPCqAWVHN6h/GnBap+MyM7PBVX3prJmZjQFOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRXyk+HNbFzoOem6lpa79KHH2fe1ryqu+DJX2ZGFpGWSFktaKGlBKtta0nxJD6S/W6VySTpL0lJJiyT9cVVxm5mNR1V3Q709IqZFRG+aPgm4KSKmADelaYCDgSlpmA2cU3qkZmbjWNXJYqBDgQvT+IXAu3PlF0XmVqBL0nYVxGdmNi5Vec4igBslBfD1iJgLdEfEyjT/10B3Gp8EPJpbdnkqW5krQ9JssiMPuru7qdVqnYt+EP39/aVvs1XTVq8GYKHbaFTp3hTmTF1XdRijWtltNHlisHr16tLfK63q1HusymTxtohYIenVwHxJ9+VnRkSkRNK0lHDmAvT29kZfX1/bgm1GrVaj7G22rKsLoPR4x1QbVeDsi6/hjMW+7qSROVPXldpGb35a7NvdNWZet516j1XWDRURK9LfVcDVwN7AY/XupfR3Vaq+Atght/jkVGZmZiWoJFlImihp8/o4cCCwBJgHzEzVZgLXpPF5wDHpqqh9gTW57iozM+uwqo53u4GrJdVj+E5E/EDS7cDlko4DHgEOT/WvBw4BlgLPAB8oP2Qzs/GrkmQREQ8Bbxyk/HFg/0HKAzi+hNDMzGwQo+3SWTMzG4WcLMzMrJCThZmZFXKyMDOzQv71j1kHtHqH0zlT2xyIWZv4yMLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK1R6spC0g6SbJd0j6W5Jf5fKT5G0QtLCNBySW+aTkpZKul/SQWXHbGY23lVxI8F1wJyIuDM9h/sOSfPTvDMj4gv5ypJ2A2YAuwPbAz+UtEtEPF9q1GZm41jpRxYRsTIi7kzjTwH3ApMaLHIocGlEPBcRD5M9h3vvzkdqZmZ1ld6iXFIP8CbgF8BbgRMkHQMsIDv6eJIskdyaW2w5QyQXSbOB2QDd3d3UarWOxT6Y/v7+0rfZqmmrVwOw0G3UEXOmrmtpue5NW192vCi7jSZPDJY/9luuvviaYS87ddKWHYiosU69xypLFpI2A64EToyItZLOAU4FIv09Azh2OOuMiLnAXIDe3t7o6+tra8xFarUaZW+zZV1dAKXHO6baaARmtfw8i3WcsdiPmWmk7DZ689MCaGmby47qa3M0xTr1HqvkaihJG5Iliosj4iqAiHgsIp6PiD8A32B9V9MKYIfc4pNTmZmZlaSKq6EEnAfcGxFfzJVvl6t2GLAkjc8DZkjaWNLOwBTgtrLiNTOzarqh3gocDSyWtDCVfQo4UtI0sm6oZcCHASLibkmXA/eQXUl1vK+EMjMrV+nJIiJ+AmiQWdc3WOY04LSOBWVmZg35F9xmZlbIycLMzAo5WZiZWSFf0G02hJ4Wfyth9nLkIwszMyvkZGFmZoXcDWVmNgq12g16wfSJbY4k4yMLMzMr5GRhZmaF3A1lL3u+qsls5JwsbEzwB75ZtZwszMw65OX0JcfnLMzMrJCThZmZFXI3lJVq8Yo1LT9y1Myq4yMLMzMr5GRhZmaFxkw3lKTpwJeBCcA3I+L0ikMat0ZyhcecqW0MxMxKMyaShaQJwFeBdwDLgdslzYuIe6qN7MVG0h+/7PS/aHM0ZmbtMyaSBbA3sDQiHgKQdClwKDCqkkUVWv2Wf+lDjwMwwyebzawJioiqYygk6X3A9Ij4YJo+GtgnIk4YUG82MDtN7grcX2qgsA3w25K3Oda4jRpz+xRzGzU2kvbZKSK2HWzGWDmyaEpEzAXmVrV9SQsioreq7Y8FbqPG3D7F3EaNdap9xsrVUCuAHXLTk1OZmZmVYKwki9uBKZJ2lrQRMAOYV3FMZmbjxpjohoqIdZJOAG4gu3T2/Ii4u+KwBlNZF9gY4jZqzO1TzG3UWEfaZ0yc4DYzs2qNlW4oMzOrkJOFmZkVcrJogaTpku6XtFTSSYPM31jSZWn+LyT1VBBmZZpon1mSfiNpYRo+WEWcVZF0vqRVkpYMMV+Szkrtt0jSH5cdY9WaaKM+SWtyr6HPlB1jlSTtIOlmSfdIulvS3w1Sp62vIyeLYcrdeuRgYDfgSEm7Dah2HPBkRLweOBP493KjrE6T7QNwWURMS8M3Sw2yehcA0xvMPxiYkobZwDklxDTaXEDjNgL4ce419NkSYhpN1gFzImI3YF/g+EHeZ219HTlZDN8Ltx6JiP8F6rceyTsUuDCNXwHsL0klxlilZtpnXIuIW4AnGlQ5FLgoMrcCXZK2Kye60aGJNhrXImJlRNyZxp8C7gUmDajW1teRk8XwTQIezU0v56X/pBfqRMQ6YA3wqlKiq14z7QPw3nRofIWkHQaZP54124bj3Z9I+qWk70vavepgqpK6ud8E/GLArLa+jpwsrArfA3oiYk9gPuuPwsyadSfZfYzeCJwNfLfacKohaTPgSuDEiFjbyW05WQxfM7ceeaGOpA2ALYHHS4mueoXtExGPR8RzafKbwF4lxTZW+PY2BSJibUT0p/HrgQ0lbVNxWKWStCFZorg4Iq4apEpbX0dOFsPXzK1H5gEz0/j7gP+O8fPrx8L2GdBv+i6y/lZbbx5wTLqaZV9gTUSsrDqo0UTSa+rnASXtTfZZNl6+kJH2/Tzg3oj44hDV2vo6GhO3+xhNhrr1iKTPAgsiYh7ZP/HbkpaSnaSbUV3E5WqyfT4m6V1kV3Q8AcyqLOAKSLoE6AO2kbQcOBnYECAizgWuBw4BlgLPAB+oJtLqNNFG7wP+RtI64Flgxjj6QgbwVuBoYLGkhansU8CO0JnXkW/3YWZmhdwNZWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLaStLzuTuBLpTUI+lnaV6PpPfn6k6TdEgL26hJGvED6SX1SjprmMtcL6lrpNvuJEldkj5a4fY/NYJlZ0navp3xWHs4WVi7PZu7E+i0iFgWEW9J83qA9+fqTiO7DrwSEbEgIj42zGUOiYjVHQqpXbqAypIF2fX+rZoFOFmMQk4W1nGS+tPo6cCfpiOOfwI+CxyRpo+QNDE9x+A2SXdJOjQtv6mkSyXdK+lqYNMhtnOIpPsk3ZHu439tKt9b0s/TOn8maddU3perc0radk3SQ5IGTSKSlknaJh0l3SvpG+l5AjdKeklckt6p7Jkmd0n6oaTuVL6ZpG9JWpxuqPjeVD5d0p3pBnk3pbKh2mWWpGtSzA9IOjnXzq9L7fr5tK2b0noX55Yfch8kvT7F+8u03OtS+Sck3Z5i/pdB9vd0YNO07YtT2V+n2BdK+rqkCWm4QNKSFNPHJb0P6AUuTnUH/T9bRSLCg4e2DcDzwMI0XJ3K+tPfPuDaXN1ZwFdy0/8G/HUa7wJ+BUwE/p7sl+AAe5L98rt3wHY3IbvD5s5p+pL6toAtgA3S+AHAlQPjAU4BfgZsDGxDduuIDQfZv2Vpfk+KY1oqv7we+4D6W7H+x68fBM5I4/8OfGlAvW0H7MPWBe0yC1hJdkfjTYElZB+2PcCS3Lo3ALZI49uQ/aJXjfaB7A6mh+Xa9pXAgcDctOwrgGuB/QbZ5/7c+BvIbhy5YZr+GnAM2f3A5ufqdaW/tYH/Ww+jY/DtPqzdno2IaS0ueyDwLkn/kKY3Ibt9wX7AWQARsUjSokGW/SPgoYh4OE1fQvbAF8hu5HihpClAkG4bMYjrIrvB4XOSVgHdZLd1HsrDEbEwjd9B9uE70GTgMmX3w9oIqMd3ALnbwETEk5LeCdxS34eIqD/PYah2gewD93EASVcBb+Old2AV8G+S9gP+QHab6u6h9kHS5sCkiLg6xfG7tP4DUyx3pfqbkT1Y55bBmweA/ckSw+3KbuW0KbCKLIG8VtLZwHXAjQ3WYaOAk4WNJgLeGxH3v6hw5M+NOhW4OSIOU3bv/9oQ9Z7LjT9P8ftjYP3Buk3OBr4YEfMk9ZEdwQzXUO2yD1nyyxvs/j1HkR217BURv5e0jCzhQHP7kI/jcxHx9WHGfmFEfPIlM6Q3AgcBHwEOB44dxnqtZD5nYWV6Cti8wfQNwN9KL9xN9E2p/BbSiXFJe5B1RQ10P9k31Z40fURu3pasvzXzrNbDb0l+2zNz5fOB4+sTkrYCbgX2k7RzKts6zR6qXQDeIWnr1L//buCnvLRdtwRWpUTxdmCnRgFH9uS15ZLenba3saRXpjiOVfYMBSRNkvTqQVbxe2W3zwa4CXhfvV6KdSdltxN/RURcCXwaqD8femDsNko4WViZFgHPp5OmHwduBnZLJzOPIDsC2BBYJOnuNA3Zs4M3k3Qv2UnxOwauOCKeJbsC6AeS7iD70FmTZv8H8DlJd1H+0fQpwH+lmH6bK/9XYKt0gveXwNsj4jdkXWdXpbLLUt2h2gXgNrJnGiwiOxezIHVL/TSt+/PAxUCvpMVk5wvuayLuo8nuDryI7FzOayLiRuA7wM/Tuq5g8A/2uSnWiyPiHrJkcGNa13xgO7KusJqyO6b+J1A/8rgAONcnuEcf33XWXjYkbRYR/ekb+FeBByLizKrj6hRJs8hOBp9QdSz28ucjC3s5+VD6pno3WdfLcPrWzawBH1mYmVkhH1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFfo/iH9INaFuDUYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"###\n",
"### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is\n",
"###\n",
"bins = np.arange( -0.1, 2.1, 0.1 )\n",
"\n",
"df_gains = df_pmt[gain_keys].stack().reset_index()\n",
"df_gains = df_gains[ df_gains[0] < 2.5 ]\n",
"df_gains.hist(bins=bins)\n",
"\n",
"plt.plot([0.3,0.3], [0,1500], color='red')\n",
"plt.plot([1.7,1.7], [0,1500], color='red')\n",
"plt.xlabel(\"Fitted gain in acceptance test\")\n",
"plt.ylabel(\"Counts\")\n",
"plt.title(\"Mean: {}, std_dev: {}\".format( round(df_gains[0].mean(),3), round(df_gains[0].std(),3) ) )\n"
]
}
],
"metadata": {
...
...
%% Cell type:code id:6b9d9ddb-8cf4-4c9c-bdc0-0de78f0ec35d tags:
```
python
#pip install km3dia
```
%% Cell type:code id:4d699873-c366-4870-a262-56b4c1312855 tags:
```
python
#pip install xmltodict
```
%% Cell type:code id:9034b755-3525-4a06-bbd5-59fe2a1ce3d3 tags:
```
python
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
xmltodict
import
km3db
import
km3dia
```
%% Cell type:code id:d9bf120b-39cc-4adc-8c2f-ecb425d7cd18 tags:
```
python
dia
=
km3dia
.
DBManager
(
container
=
'
pd
'
)
DOMInt
=
km3dia
.
DOMIntegrationSummary
()
```
%% Cell type:code id:1959e023-8415-465c-90a2-7da4b9c3a93b tags:
```
python
#Get measurement results
df_tests
=
DOMInt
.
test_results
df_tests
=
df_tests
.
reset_index
().
set_index
(
'
UPI
'
)
```
%% Cell type:code id:8ba41596-7e7a-4925-80f9-98c697e705f4 tags:
```
python
# Generate the list of relevant keys
gain_keys
=
[
key
for
key
in
df_tests
.
columns
if
key
.
lower
().
find
(
'
gain
'
)
!=
-
1
]
dc_keys
=
[
key
for
key
in
df_tests
.
columns
if
key
.
lower
().
find
(
'
dark
'
)
!=
-
1
]
pmt_keys
=
gain_keys
+
dc_keys
DOMid_keys
=
[
'
SERIAL
'
,
'
SiteID
'
]
```
%% Cell type:code id:7f681bc2-bfb5-4232-8983-de877bf2f1d4 tags:
```
python
# Cut the dataframe to no NaN
df_pmt
=
df_tests
.
dropna
(
subset
=
pmt_keys
)
df_pmt
=
df_pmt
[
pmt_keys
+
DOMid_keys
]
```
%% Cell type:code id:5d602ade-f9d6-4303-ab4c-94938eb0660a tags:
```
python
# Convert pmt results result branches to float
df_pmt
=
df_pmt
.
astype
(
dict
(
zip
(
pmt_keys
,
[
float
]
*
len
(
pmt_keys
))))
```
%% Cell type:code id:7c303c75-fa66-48f2-a09f-a5bf146538bc tags:
```
python
def
count_chan_above_threshold
(
gain_threshold
=
1.7
,
ncr_pmt_threshold
=
3
,
siteID
=
"
999
"
):
"""
Count number of channels above a gain threshold for each DOM
siteID =
"
999
"
means for all sites,
"
1
"
is Amsterdam
"""
doms
=
[]
bad_channels
=
[]
# number of bad channels
for
index
,
row
in
df_pmt
.
iterrows
():
bad
=
0
if
siteID
!=
"
999
"
and
row
[
"
SiteID
"
]
!=
siteID
:
continue
# only amsterdam
for
gain_key
in
gain_keys
:
if
row
[
gain_key
]
>
gain_threshold
:
bad
+=
1
if
bad
==
31
:
continue
# there is a group of (older?) DOMS with all gains around 29
doms
.
append
(
row
[
"
SERIAL
"
]
)
bad_channels
.
append
(
bad
)
bad_doms
=
[
i
for
i
,
v
in
enumerate
(
bad_channels
)
if
v
>
ncr_pmt_threshold
]
return
doms
,
bad_channels
,
len
(
bad_doms
)
```
%% Cell type:code id:4a9a5b4b-4d41-450d-bc2e-fdb10a870ed8 tags:
```
python
import
matplotlib.pyplot
as
plt
gain_threshold
=
1.7
ncr_pmt_threshold
=
3
location
=
{
"
Amsterdam
"
:
"
1
"
,
"
All
"
:
"
999
"
}
# amsterdam
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_threshold
,
ncr_pmt_threshold
,
location
[
"
Amsterdam
"
]
)
fig
,
axes
=
plt
.
subplots
(
1
,
2
,
figsize
=
[
20
,
5
]
)
axes
[
0
].
hist
(
bad_channels
,
[
-
0.5
,
0.5
,
1.5
,
2.5
,
3.5
,
4.5
,
5.5
,
6.5
,
7.5
,
8.5
,
9.5
,
10.5
])
axes
[
0
].
plot
([
bad_pmt_threshold
,
bad_pmt_threshold
],
[
0
,
30
],
color
=
'
red
'
)
axes
[
0
].
set_xlabel
(
"
Number of channels with gain >
"
+
str
(
gain_threshold
))
axes
[
0
].
set_ylabel
(
"
Number of DOMs
"
)
axes
[
0
].
set_title
(
"
Location: Amsterdam, NCR doms:
"
+
str
(
n_bad_doms
)
)
print
(
"
failed doms in Amsterdam
"
,
n_bad_doms
)
# all locations
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_threshold
,
ncr_pmt_threshold
,
location
[
"
All
"
]
)
axes
[
1
].
hist
(
bad_channels
,
[
-
0.5
,
0.5
,
1.5
,
2.5
,
3.5
,
4.5
,
5.5
,
6.5
,
7.5
,
8.5
,
9.5
,
10.5
])
axes
[
1
].
plot
([
bad_pmt_threshold
,
bad_pmt_threshold
],
[
0
,
60
],
color
=
'
red
'
)
axes
[
1
].
set_xlabel
(
"
Number of channels with gain >
"
+
str
(
gain_threshold
))
axes
[
1
].
set_ylabel
(
"
Number of DOMs
"
)
axes
[
1
].
set_title
(
"
Location: All, NCR doms:
"
+
str
(
n_bad_doms
)
)
print
(
"
failed doms in All
"
,
n_bad_doms
)
```
%% Output
failed doms in Amsterdam 20
failed doms in All 30
%% Cell type:code id:4eaed37c-3cae-44ef-88db-fac0ce64acbf tags:
```
python
import
numpy
as
np
def
ncr_doms_vs_gain_threshold
(
gain_min
,
gain_max
,
gain_step
,
ncr_pmt_threshold
=
3
,
siteID
=
"
999
"
):
"""
Plot number of bad doms (doms with ncr) versus max gain threshold
"""
gain_thresholds
=
np
.
arange
(
gain_min
,
gain_max
,
gain_step
)
number_bad_doms
=
[]
for
gain_tmp
in
gain_thresholds
:
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_tmp
,
ncr_pmt_threshold
,
siteID
)
number_bad_doms
.
append
(
n_bad_doms
)
return
gain_thresholds
,
number_bad_doms
# amsterdam
gain_thresholds
,
number_bad_doms
=
ncr_doms_vs_gain_threshold
(
1.7
,
2.0
,
0.05
,
3
,
location
[
"
Amsterdam
"
]
)
fig
,
axes
=
plt
.
subplots
(
1
,
2
,
figsize
=
[
20
,
5
]
)
axes
[
0
].
plot
(
gain_thresholds
,
number_bad_doms
)
axes
[
0
].
set_xlabel
(
"
Max gain in acceptance test
"
)
axes
[
0
].
set_ylabel
(
"
Number of DOMs with NCR
"
)
axes
[
0
].
set_title
(
"
Location: Amsterdam
"
)
# all locations
gain_thresholds
,
number_bad_doms
=
ncr_doms_vs_gain_threshold
(
1.7
,
2.0
,
0.05
,
3
,
location
[
"
All
"
]
)
axes
[
1
].
plot
(
gain_thresholds
,
number_bad_doms
)
axes
[
1
].
set_xlabel
(
"
Max gain in acceptance test
"
)
axes
[
1
].
set_ylabel
(
"
Number of DOMs with NCR
"
)
axes
[
1
].
set_title
(
"
Location: Amsterdam
"
)
```
%% Output
Text(0.5, 1.0, 'Location: Amsterdam')
%% Cell type:code id:ca1f27e5-fecb-42d5-8e17-dd58da923f08 tags:
```
python
###
### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is
###
bins
=
np
.
arange
(
-
0.1
,
2.1
,
0.1
)
df_gains
=
df_pmt
[
gain_keys
].
stack
().
reset_index
()
df_gains
=
df_gains
[
df_gains
[
0
]
<
2.5
]
df_gains
.
hist
(
bins
=
bins
)
plt
.
plot
([
0.3
,
0.3
],
[
0
,
1500
],
color
=
'
red
'
)
plt
.
plot
([
1.7
,
1.7
],
[
0
,
1500
],
color
=
'
red
'
)
plt
.
xlabel
(
"
Fitted gain in acceptance test
"
)
plt
.
ylabel
(
"
Counts
"
)
plt
.
title
(
"
Mean: {}, std_dev: {}
"
.
format
(
round
(
df_gains
[
0
].
mean
(),
3
),
round
(
df_gains
[
0
].
std
(),
3
)
)
)
```
%% Output
Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')
...
...
This diff is collapsed.
Click to expand it.
pmt_gain.ipynb
+
43
−
5
View file @
861be23e
...
...
@@ -196,7 +196,7 @@
},
{
"cell_type": "code",
"execution_count": 2
0
1,
"execution_count": 21
5
,
"id": "4eaed37c-3cae-44ef-88db-fac0ce64acbf",
"metadata": {},
"outputs": [
...
...
@@ -206,7 +206,7 @@
"Text(0.5, 1.0, 'Location: Amsterdam')"
]
},
"execution_count": 2
0
1,
"execution_count": 21
5
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -260,11 +260,49 @@
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
273
,
"id": "ca1f27e5-fecb-42d5-8e17-dd58da923f08",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')"
]
},
"execution_count": 273,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkFElEQVR4nO3dfZwdZXn/8c/X8Gh4WBBcIQEWNVCBYCwrULV0LQiBVhG1EKSQCBqtUItNbdH6Eyql0iqioIJRELDIQ3mQCChEyhGfEALEJDxJgPAjaSQKJGEBqcGrf8x9yLDsnjl79pyZXfb7fr3mtTP33DNzzb3nnOvMPXNmFBGYmZk18oqqAzAzs9HPycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwGyMkhaTXD3OZWZJ+0qmYbPxwsrBCkpZJ+l9J2wwovyt9gPVUFFo9jo0kXZHiDEl9DepuLOk8SY9IekrSQkkHD6jzQUlLJfVL+oGk7XPzuiRdKGlVGk5p0z4MOxGMJpL2l3SfpGck3SxppyHqvVrSJZL+R9IaST+VtM8Qdc8f2C7pf5Ifnpd0dqf2y9ZzsrBmPQwcWZ+QNBV4ZXXhvMRPgL8Gfl1QbwPgUeDPgC2BTwOX1xNeSjT/BhwKbE2235fklj+TbL97gL2BoyV9oD27MDalLxFXAf+PrM0WAJcNUX0z4HZgr1T3QuA6SZsNWOfbgNcNXDgiNqsPwGuAZ4H/atOuWCMR4cFDwwFYRvahenuu7AvAPwMB9KSyjVP5/wceA84FNk3ztgKuBX4DPJnGJ+fWVwNOBX4KPAXcCGzTQqzLgb5hLrMIeG9uv76am7d92sfXpenfAm/Ozf8U8OMmt/N64EfAmrSey1L5LWkbTwP9wBGp/BPASuB/gGNTndcXbONVwDxgLXBbatOf5Ob/ETAfeAK4Hzg8le9Dlmgn5OoeBixqYr9mAz/LTU8k+xD/oybbZS2wV256A+AuYM9G+wzMBB4CVPV7ZDwMPrKwZt0KbCHpDZImADOA/xxQ53RgF2Aa2QfjJOAzad4rgG8BOwE7kn2YfGXA8u8HPgC8GtgI+If6DEmLJL2/jftTX293ivnufPEg43s0mJ+f18ipZElwK2AycDZAROyX5r8xsm/Nl0maTrb/7wCmAAc0uY2vAr8DtiNLMMe+EKg0kSxRfIesjWcAX5O0W0T8gixZ/XluXe9PdYvaf3fgl/WJiHgaeDCVNyRpGtn/emmu+OPALRGxqGDxmcBFkTKHdZaThQ3Ht4FjyD7A7gVW1GdIEtk3zI9HxBMR8RRZd84MgIh4PCKujIhn0rzTyLqC8r4VEb+KiGeBy8mSDmn5PSPiO+3cGUkbAhcDF0bEfan4B8DhkvaUtClZsgvWd7n9ADhJ0uapL/1Ymu+O+z1Zstw+In4XEY1OPB9O1h5L0ofvKU3szwTgvcBnIuLpiFhC1s1T95fAsoj4VkSsi4i7gCuBv0rzLyF1NUraHDgklRW1/2ZkR0t5a4DNC+Ldguw19S8RsSaV7QB8mPVfMoZadiey18+FjepZ+zhZ2HB8m+zb5izgogHztiX70LxD0mpJq8k+WLcFkPRKSV9PJ5bXknW9dKUPuLr8+YZnyD6EOkLSK8j253+BE+rlEfFD4GSyD9FlaXiKrHsL4GNkR0UPANeQfZjW5xX5R7Ijkdsk3S3p2AZ1tyc7t1L3SBPr35b152QGW24nYJ/6/yf9j44i6/uH7CjiPZI2Bt4D3BkRzWy3H9hiQNkWZO02qJSIvwfcGhGfy836EvDZevJo4Giy7rWHm4jP2sDJwpqWPjgeJvvGedWA2b8l+xDdPSK60rBlZCciAeYAuwL7RMQWQL3rRZQsHQWdB3STnav4fX5+RHw1IqZERDdZ0tgAWJLmPRERR0XEayJid7L30G3NbDcifh0RH4qI7cm+PX+twRVQK4EdctM7NrGJ3wDrGiz3KPCj3P+nK3V7/U2K7x6y5HIwuS6oJtwNvLE+kbq7XseLu/bIzd8Y+C5Zkv3wgNn7A5+X9GtJ9S8PPx+kC+wYfFRRKicLG67jgD9PXSMviIg/AN8AzpT0agBJkyQdlKpsTpZMVkvamuzbe9ukS2I3SZMbSdokJYXBnAO8AXhn6vLKr2cTSXsosyMwF/hyRDyZ5r9O0qskTUiX3M4G/jW3fG2oy2kl/ZWkyWnySbLurT+k6ceA1+aqXw7MkrSbpFfSRHtFxPNkSfyUdCS3G1m/ft21wC6Sjpa0YRreLOkNuTrfAf6OLJk3e5XR1cAekt6b/gefITsxft/Aiqnr7wqy18LM9LrJ24Us8UxjfTfkO9M26ut4C9n5MF8FVaaqz7B7GP0DWVfMAYOUb8CLr4bahOw8xUNkV7jcC3wszdue7IqnfuBXZN8oA9ggza8BH8ytexYvvornbuCoghhjwFCP61PA99P4Tmne71Is9eGoNL+L7Oqop8m6xT7Hi68QOpzs6qRngIXAQQPieBB4xxAx/gfZeZ7+VG92bt5HyI4mVrP+CqWTUgzDuRpqW7KkMNTVULsC15EdhTwO/DcwLTd/R7IEdt2A9Ra1/wHAfWRJoFZv+zTvXODcNP5naT+eGdD+fzrEel+yz8DXgW9X/b4Yb4NS45vZCKWjhssj4i1Vx2LWbk4WZmZWyOcszMaYdCXVwNte9Es6qurY7OXLRxZmZlZog6oD6JRtttkmenp6St3m008/zcSJE0vd5ljjNmrM7VPMbdTYSNrnjjvu+G1EbDvYvJdtsujp6WHBggWlbrNWq9HX11fqNscat1Fjbp9ibqPGRtI+kob8EabPWZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWaGO/YI7PUv3IrKnkQUwNyK+nB58cxnQQ/YMgsMj4sn0oJovkz2F7RlgVkTcmdY1E/h0WvW/RoSfkGXWJj0nXdfysstO/4s2RmKjWSePLNYBcyJiN2Bf4Pj05K6TgJsiYgpwU5qG7FGOU9Iwm+xpZuSeqrYPsDdwsqStOhi3mZkN0LFkEREr60cGEfEU2VPTJgGHsv7ZuRcC707jhwIXReZWoEvSdsBBwPzInn38JDAfmN6puM3M7KVKuZGgpB7gTcAvgO6IWJlm/ZqsmwqyRPJobrHlqWyo8sG2M5vsqITu7m5qtVp7dqBJ/f39pW9zrHEbNVZF+8yZuq7lZav4X/o11Fin2qfjyULSZsCVwIkRsTY7NZGJiJDUtgdqRMRcYC5Ab29vlH1nSt8Ns5jbqLEq2mfWSM5ZHNXXvkCa5NdQY51qn45eDSVpQ7JEcXFEXJWKH0vdS6S/q1L5CmCH3OKTU9lQ5WZmVpKOJYt0ddN5wL0R8cXcrHnAzDQ+E7gmV36MMvsCa1J31Q3AgZK2Sie2D0xlZmZWkk52Q70VOBpYLGlhKvsUcDpwuaTjgEeAw9O868kum11KdunsBwAi4glJpwK3p3qfjYgnOhi3mZkN0LFkERE/ATTE7P0HqR/A8UOs63zg/PZFZ2Zmw+FfcJuZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhUp5+JGZvTy1+vxuP7t77PGRhZmZFXKyMDOzQk4WZmZWyMnCzMwKdfKxqudLWiVpSa7sMkkL07Cs/gQ9ST2Sns3NOze3zF6SFktaKums9LhWMzMrUSevhroA+ApwUb0gIo6oj0s6A1iTq/9gREwbZD3nAB8CfkH26NXpwPfbH66ZmQ2lY0cWEXELMOizstPRweHAJY3WIWk7YIuIuDU9dvUi4N1tDtXMzApU9TuLPwUei4gHcmU7S7oLWAt8OiJ+DEwClufqLE9lg5I0G5gN0N3dTa1Wa3fcDfX395e+zbHGbdRYFe0zZ+q6UrcHjGgf/RpqrFPtU1WyOJIXH1WsBHaMiMcl7QV8V9Luw11pRMwF5gL09vZGX19fO2JtWq1Wo+xtjjVuo8aqaJ9ZLf6wbiSWHdXX8rJ+DTXWqfYpPVlI2gB4D7BXvSwingOeS+N3SHoQ2AVYAUzOLT45lZmZWYmquHT2AOC+iHihe0nStpImpPHXAlOAhyJiJbBW0r7pPMcxwDUVxGxmNq518tLZS4CfA7tKWi7puDRrBi89sb0fsChdSnsF8JGIqJ8c/yjwTWAp8CC+EsrMrHQd64aKiCOHKJ81SNmVwJVD1F8A7NHW4MzMbFj8C24zMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWyMnCzMwKOVmYmVkhJwszMyvUyceqni9plaQlubJTJK2QtDANh+TmfVLSUkn3SzooVz49lS2VdFKn4jUzs6F18sjiAmD6IOVnRsS0NFwPIGk3smdz756W+ZqkCZImAF8FDgZ2A45Mdc3MrESdfAb3LZJ6mqx+KHBpRDwHPCxpKbB3mrc0Ih4CkHRpqntPu+Mdd048Mfv7pS9VGYXZ6Of3CtDBZNHACZKOARYAcyLiSWAScGuuzvJUBvDogPJ9hlqxpNnAbIDu7m5qtVobwy7W399f+jZbNS3FudBtNKpU0T5zpq4rdXvAiPax7Daq6r3Sqk61T9nJ4hzgVCDS3zOAY9u18oiYC8wF6O3tjb6+vnatuim1Wo2yt9myri6A0uMdU21UgZG0T89J17W41fK/My47qq/lZUt/DVX0XmlVp9qn1FdJRDxWH5f0DeDaNLkC2CFXdXIqo0G5mZmVpNRLZyVtl5s8DKhfKTUPmCFpY0k7A1OA24DbgSmSdpa0EdlJ8HllxmxmZh08spB0CdAHbCNpOXAy0CdpGlk31DLgwwARcbeky8lOXK8Djo+I59N6TgBuACYA50fE3Z2K2czMBtfJq6GOHKT4vAb1TwNOG6T8euD6NoZmZhVr/fwKXDB9YhsjsWb5F9xmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCHUsWks6XtErSklzZ5yXdJ2mRpKsldaXyHknPSlqYhnNzy+wlabGkpZLOkqROxWxmZoPr5JHFBcD0AWXzgT0iYk/gV8Anc/MejIhpafhIrvwc4ENkz+WeMsg6zcyswzqWLCLiFuCJAWU3RsS6NHkrMLnROiRtB2wREbdGRAAXAe/uQLhmZtZAx57B3YRjgcty0ztLugtYC3w6In4MTAKW5+osT2WDkjQbmA3Q3d1NrVZrd8wN9ff3l77NVk1bvRqAhW6jUWUk7TNn6rriSi8DZb+GqnqvtKpT7VNJspD0z8A64OJUtBLYMSIel7QX8F1Juw93vRExF5gL0NvbG319fW2KuDm1Wo2yt9myri6A0uMdU21UgZG0z6yTrmtvMKPUBdMnlvsaqui90qpOvcdKTxaSZgF/CeyfupaIiOeA59L4HZIeBHYBVvDirqrJqczMzEpU6qWzkqYD/wi8KyKeyZVvK2lCGn8t2YnshyJiJbBW0r7pKqhjgGvKjNnMzFpIFpK2krRnE/UuAX4O7CppuaTjgK8AmwPzB1wiux+wSNJC4ArgIxFRPzn+UeCbwFLgQeD7w43ZzMxGpqluKEk14F2p/h3AKkk/jYi/H2qZiDhykOLzhqh7JXDlEPMWAHs0E6eZmXVGs0cWW0bEWuA9wEURsQ9wQOfCMjOz0aTZZLFB+s3D4cC1HYzHzMxGoWaTxb8ANwBLI+L2dBL6gc6FZWZmo0mzl86uTLfoACAiHpL0xQ7FZGZmo0yzRxZnN1lmZmYvQw2PLCT9CfAWYFtJ+SuftgAmdDIwMzMbPYq6oTYCNkv1Ns+VrwXe16mgzMxsdGmYLCLiR8CPJF0QEY+UFJOZmY0yzZ7g3ljSXKAnv0xE/HkngjIzs9Gl2WTxX8C5ZLfdeL5z4ZiZ2WjUbLJYFxHndDQSMzMbtZq9dPZ7kj4qaTtJW9eHjkZmZmajRrNHFjPT30/kygJ4bXvDMTOz0aipZBERO3c6EDMzG72avUX5MYOVR8RF7Q3HzMxGo2a7od6cG98E2B+4E3CyMDMbB5rthvrb/LSkLuDSTgRkZmajT6vP4H4aKDyPIel8SaskLcmVbS1pvqQH0t+tUrkknSVpqaRFkv44t8zMVP8BSTMH25aZmXVOU8lC0vckzUvDdcD9wNVNLHoBMH1A2UnATRExBbgpTQMcDExJw2zgnLTtrYGTgX2AvYGT6wnGzMzK0ew5iy/kxtcBj0TE8qKFIuIWST0Dig8F+tL4hUAN+KdUflFEBHCrpK70dL4+YH5EPAEgaT5ZArqkydjNzGyEmj1n8SNJ3aw/0T2Sp+R1R8TKNP5roDuNTwIezdVbnsqGKn8JSbPJjkro7u6mVquNIMzh6+/vL32brZq2ejUAC91Go8pI2mfO1HXtDWaUKvs1VNV7pVWdap9mL509HPg82VGAgLMlfSIirhjJxiMiJMVI1jFgfXOBuQC9vb3R19fXrlU3pVarUfY2W9bVBVB6vGOqjSowkvaZddJ17Q1mlLpg+sRyX0MVvVda1an3WLPdUP8MvDkiVgFI2hb4IdBKsnhM0nYRsTJ1M61K5SuAHXL1JqeyFazvtqqX11rYrpmZtajZq6FeUU8UyePDWHageay/fchM4Jpc+THpqqh9gTWpu+oG4EBJW6UT2wemMjMzK0mzRxY/kHQD608qHwFcX7SQpEvIjgq2kbSc7Kqm04HLJR0HPAIcnqpfDxwCLAWeAT4AEBFPSDoVuD3V+2z9ZLeZmZWj6Bncryc7If0JSe8B3pZm/Ry4uGjlEXHkELP2H6RuAMcPsZ7zgfOLtmdmZp1RdGTxJeCTABFxFXAVgKSpad47OxibmZmNEkXnHbojYvHAwlTW05GIzMxs1ClKFl0N5m3axjjMzGwUK0oWCyR9aGChpA8Cd3QmJDMzG22KzlmcCFwt6SjWJ4deYCPgsA7GZWZmo0jDZBERjwFvkfR2YI9UfF1E/HfHIzMzG8TiFWta+rX6stP/ogPRjB/N3hvqZuDmDsdiZmajVKu/wjYzs3Gk2V9wm1kJWu1iMes0H1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKyMDOzQk4WZmZWqPRkIWlXSQtzw1pJJ0o6RdKKXPkhuWU+KWmppPslHVR2zGZm413pP8qLiPuBaQCSJgArgKvJHqN6ZkR8IV9f0m7ADGB3YHvgh5J2iYjny4zbzGw8q7oban/gwYh4pEGdQ4FLI+K5iHiY7Bnde5cSnZmZAdXf7mMGcElu+gRJxwALgDkR8SQwCbg1V2d5KnsJSbOB2QDd3d3UarVOxDyk/v7+0rfZqmmrVwOw0G00qnRvCnOmrqs6jFGt1TZq9XVX1XulVZ16j1WWLCRtBLyL9Ixv4BzgVCDS3zOAY4ezzoiYC8wF6O3tjb6+vnaF25RarUbZ22xZVxdA6fGOqTaqwNkXX8MZi6v+Dje6zZm6rqU2WnZUX2sbrOi90qpOvceq7IY6GLgzPTODiHgsIp6PiD8A32B9V9MKYIfccpNTmZmZlaTKZHEkuS4oSdvl5h0GLEnj84AZkjaWtDMwBbittCjNzKyabihJE4F3AB/OFf+HpGlk3VDL6vMi4m5JlwP3AOuA430llJlZuSpJFhHxNPCqAWVHN6h/GnBap+MyM7PBVX3prJmZjQFOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRXyk+HNbFzoOem6lpa79KHH2fe1ryqu+DJX2ZGFpGWSFktaKGlBKtta0nxJD6S/W6VySTpL0lJJiyT9cVVxm5mNR1V3Q709IqZFRG+aPgm4KSKmADelaYCDgSlpmA2cU3qkZmbjWNXJYqBDgQvT+IXAu3PlF0XmVqBL0nYVxGdmNi5Vec4igBslBfD1iJgLdEfEyjT/10B3Gp8EPJpbdnkqW5krQ9JssiMPuru7qdVqnYt+EP39/aVvs1XTVq8GYKHbaFTp3hTmTF1XdRijWtltNHlisHr16tLfK63q1HusymTxtohYIenVwHxJ9+VnRkSkRNK0lHDmAvT29kZfX1/bgm1GrVaj7G22rKsLoPR4x1QbVeDsi6/hjMW+7qSROVPXldpGb35a7NvdNWZet516j1XWDRURK9LfVcDVwN7AY/XupfR3Vaq+Atght/jkVGZmZiWoJFlImihp8/o4cCCwBJgHzEzVZgLXpPF5wDHpqqh9gTW57iozM+uwqo53u4GrJdVj+E5E/EDS7cDlko4DHgEOT/WvBw4BlgLPAB8oP2Qzs/GrkmQREQ8Bbxyk/HFg/0HKAzi+hNDMzGwQo+3SWTMzG4WcLMzMrJCThZmZFXKyMDOzQv71j1kHtHqH0zlT2xyIWZv4yMLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK1R6spC0g6SbJd0j6W5Jf5fKT5G0QtLCNBySW+aTkpZKul/SQWXHbGY23lVxI8F1wJyIuDM9h/sOSfPTvDMj4gv5ypJ2A2YAuwPbAz+UtEtEPF9q1GZm41jpRxYRsTIi7kzjTwH3ApMaLHIocGlEPBcRD5M9h3vvzkdqZmZ1ld6iXFIP8CbgF8BbgRMkHQMsIDv6eJIskdyaW2w5QyQXSbOB2QDd3d3UarWOxT6Y/v7+0rfZqmmrVwOw0G3UEXOmrmtpue5NW192vCi7jSZPDJY/9luuvviaYS87ddKWHYiosU69xypLFpI2A64EToyItZLOAU4FIv09Azh2OOuMiLnAXIDe3t7o6+tra8xFarUaZW+zZV1dAKXHO6baaARmtfw8i3WcsdiPmWmk7DZ689MCaGmby47qa3M0xTr1HqvkaihJG5Iliosj4iqAiHgsIp6PiD8A32B9V9MKYIfc4pNTmZmZlaSKq6EEnAfcGxFfzJVvl6t2GLAkjc8DZkjaWNLOwBTgtrLiNTOzarqh3gocDSyWtDCVfQo4UtI0sm6oZcCHASLibkmXA/eQXUl1vK+EMjMrV+nJIiJ+AmiQWdc3WOY04LSOBWVmZg35F9xmZlbIycLMzAo5WZiZWSFf0G02hJ4Wfyth9nLkIwszMyvkZGFmZoXcDWVmNgq12g16wfSJbY4k4yMLMzMr5GRhZmaF3A1lL3u+qsls5JwsbEzwB75ZtZwszMw65OX0JcfnLMzMrJCThZmZFXI3lJVq8Yo1LT9y1Myq4yMLMzMr5GRhZmaFxkw3lKTpwJeBCcA3I+L0ikMat0ZyhcecqW0MxMxKMyaShaQJwFeBdwDLgdslzYuIe6qN7MVG0h+/7PS/aHM0ZmbtMyaSBbA3sDQiHgKQdClwKDCqkkUVWv2Wf+lDjwMwwyebzawJioiqYygk6X3A9Ij4YJo+GtgnIk4YUG82MDtN7grcX2qgsA3w25K3Oda4jRpz+xRzGzU2kvbZKSK2HWzGWDmyaEpEzAXmVrV9SQsioreq7Y8FbqPG3D7F3EaNdap9xsrVUCuAHXLTk1OZmZmVYKwki9uBKZJ2lrQRMAOYV3FMZmbjxpjohoqIdZJOAG4gu3T2/Ii4u+KwBlNZF9gY4jZqzO1TzG3UWEfaZ0yc4DYzs2qNlW4oMzOrkJOFmZkVcrJogaTpku6XtFTSSYPM31jSZWn+LyT1VBBmZZpon1mSfiNpYRo+WEWcVZF0vqRVkpYMMV+Szkrtt0jSH5cdY9WaaKM+SWtyr6HPlB1jlSTtIOlmSfdIulvS3w1Sp62vIyeLYcrdeuRgYDfgSEm7Dah2HPBkRLweOBP493KjrE6T7QNwWURMS8M3Sw2yehcA0xvMPxiYkobZwDklxDTaXEDjNgL4ce419NkSYhpN1gFzImI3YF/g+EHeZ219HTlZDN8Ltx6JiP8F6rceyTsUuDCNXwHsL0klxlilZtpnXIuIW4AnGlQ5FLgoMrcCXZK2Kye60aGJNhrXImJlRNyZxp8C7gUmDajW1teRk8XwTQIezU0v56X/pBfqRMQ6YA3wqlKiq14z7QPw3nRofIWkHQaZP54124bj3Z9I+qWk70vavepgqpK6ud8E/GLArLa+jpwsrArfA3oiYk9gPuuPwsyadSfZfYzeCJwNfLfacKohaTPgSuDEiFjbyW05WQxfM7ceeaGOpA2ALYHHS4mueoXtExGPR8RzafKbwF4lxTZW+PY2BSJibUT0p/HrgQ0lbVNxWKWStCFZorg4Iq4apEpbX0dOFsPXzK1H5gEz0/j7gP+O8fPrx8L2GdBv+i6y/lZbbx5wTLqaZV9gTUSsrDqo0UTSa+rnASXtTfZZNl6+kJH2/Tzg3oj44hDV2vo6GhO3+xhNhrr1iKTPAgsiYh7ZP/HbkpaSnaSbUV3E5WqyfT4m6V1kV3Q8AcyqLOAKSLoE6AO2kbQcOBnYECAizgWuBw4BlgLPAB+oJtLqNNFG7wP+RtI64Flgxjj6QgbwVuBoYLGkhansU8CO0JnXkW/3YWZmhdwNZWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLaStLzuTuBLpTUI+lnaV6PpPfn6k6TdEgL26hJGvED6SX1SjprmMtcL6lrpNvuJEldkj5a4fY/NYJlZ0navp3xWHs4WVi7PZu7E+i0iFgWEW9J83qA9+fqTiO7DrwSEbEgIj42zGUOiYjVHQqpXbqAypIF2fX+rZoFOFmMQk4W1nGS+tPo6cCfpiOOfwI+CxyRpo+QNDE9x+A2SXdJOjQtv6mkSyXdK+lqYNMhtnOIpPsk3ZHu439tKt9b0s/TOn8maddU3perc0radk3SQ5IGTSKSlknaJh0l3SvpG+l5AjdKeklckt6p7Jkmd0n6oaTuVL6ZpG9JWpxuqPjeVD5d0p3pBnk3pbKh2mWWpGtSzA9IOjnXzq9L7fr5tK2b0noX55Yfch8kvT7F+8u03OtS+Sck3Z5i/pdB9vd0YNO07YtT2V+n2BdK+rqkCWm4QNKSFNPHJb0P6AUuTnUH/T9bRSLCg4e2DcDzwMI0XJ3K+tPfPuDaXN1ZwFdy0/8G/HUa7wJ+BUwE/p7sl+AAe5L98rt3wHY3IbvD5s5p+pL6toAtgA3S+AHAlQPjAU4BfgZsDGxDduuIDQfZv2Vpfk+KY1oqv7we+4D6W7H+x68fBM5I4/8OfGlAvW0H7MPWBe0yC1hJdkfjTYElZB+2PcCS3Lo3ALZI49uQ/aJXjfaB7A6mh+Xa9pXAgcDctOwrgGuB/QbZ5/7c+BvIbhy5YZr+GnAM2f3A5ufqdaW/tYH/Ww+jY/DtPqzdno2IaS0ueyDwLkn/kKY3Ibt9wX7AWQARsUjSokGW/SPgoYh4OE1fQvbAF8hu5HihpClAkG4bMYjrIrvB4XOSVgHdZLd1HsrDEbEwjd9B9uE70GTgMmX3w9oIqMd3ALnbwETEk5LeCdxS34eIqD/PYah2gewD93EASVcBb+Old2AV8G+S9gP+QHab6u6h9kHS5sCkiLg6xfG7tP4DUyx3pfqbkT1Y55bBmweA/ckSw+3KbuW0KbCKLIG8VtLZwHXAjQ3WYaOAk4WNJgLeGxH3v6hw5M+NOhW4OSIOU3bv/9oQ9Z7LjT9P8ftjYP3Buk3OBr4YEfMk9ZEdwQzXUO2yD1nyyxvs/j1HkR217BURv5e0jCzhQHP7kI/jcxHx9WHGfmFEfPIlM6Q3AgcBHwEOB44dxnqtZD5nYWV6Cti8wfQNwN9KL9xN9E2p/BbSiXFJe5B1RQ10P9k31Z40fURu3pasvzXzrNbDb0l+2zNz5fOB4+sTkrYCbgX2k7RzKts6zR6qXQDeIWnr1L//buCnvLRdtwRWpUTxdmCnRgFH9uS15ZLenba3saRXpjiOVfYMBSRNkvTqQVbxe2W3zwa4CXhfvV6KdSdltxN/RURcCXwaqD8femDsNko4WViZFgHPp5OmHwduBnZLJzOPIDsC2BBYJOnuNA3Zs4M3k3Qv2UnxOwauOCKeJbsC6AeS7iD70FmTZv8H8DlJd1H+0fQpwH+lmH6bK/9XYKt0gveXwNsj4jdkXWdXpbLLUt2h2gXgNrJnGiwiOxezIHVL/TSt+/PAxUCvpMVk5wvuayLuo8nuDryI7FzOayLiRuA7wM/Tuq5g8A/2uSnWiyPiHrJkcGNa13xgO7KusJqyO6b+J1A/8rgAONcnuEcf33XWXjYkbRYR/ekb+FeBByLizKrj6hRJs8hOBp9QdSz28ucjC3s5+VD6pno3WdfLcPrWzawBH1mYmVkhH1mYmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFfo/iH9INaFuDUYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"###\n",
"### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is\n",
"###\n",
"bins = np.arange( -0.1, 2.1, 0.1 )\n",
"\n",
"df_gains = df_pmt[gain_keys].stack().reset_index()\n",
"df_gains = df_gains[ df_gains[0] < 2.5 ]\n",
"df_gains.hist(bins=bins)\n",
"\n",
"plt.plot([0.3,0.3], [0,1500], color='red')\n",
"plt.plot([1.7,1.7], [0,1500], color='red')\n",
"plt.xlabel(\"Fitted gain in acceptance test\")\n",
"plt.ylabel(\"Counts\")\n",
"plt.title(\"Mean: {}, std_dev: {}\".format( round(df_gains[0].mean(),3), round(df_gains[0].std(),3) ) )\n"
]
}
],
"metadata": {
...
...
%% Cell type:code id:6b9d9ddb-8cf4-4c9c-bdc0-0de78f0ec35d tags:
```
python
#pip install km3dia
```
%% Cell type:code id:4d699873-c366-4870-a262-56b4c1312855 tags:
```
python
#pip install xmltodict
```
%% Cell type:code id:9034b755-3525-4a06-bbd5-59fe2a1ce3d3 tags:
```
python
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
xmltodict
import
km3db
import
km3dia
```
%% Cell type:code id:d9bf120b-39cc-4adc-8c2f-ecb425d7cd18 tags:
```
python
dia
=
km3dia
.
DBManager
(
container
=
'
pd
'
)
DOMInt
=
km3dia
.
DOMIntegrationSummary
()
```
%% Cell type:code id:1959e023-8415-465c-90a2-7da4b9c3a93b tags:
```
python
#Get measurement results
df_tests
=
DOMInt
.
test_results
df_tests
=
df_tests
.
reset_index
().
set_index
(
'
UPI
'
)
```
%% Cell type:code id:8ba41596-7e7a-4925-80f9-98c697e705f4 tags:
```
python
# Generate the list of relevant keys
gain_keys
=
[
key
for
key
in
df_tests
.
columns
if
key
.
lower
().
find
(
'
gain
'
)
!=
-
1
]
dc_keys
=
[
key
for
key
in
df_tests
.
columns
if
key
.
lower
().
find
(
'
dark
'
)
!=
-
1
]
pmt_keys
=
gain_keys
+
dc_keys
DOMid_keys
=
[
'
SERIAL
'
,
'
SiteID
'
]
```
%% Cell type:code id:7f681bc2-bfb5-4232-8983-de877bf2f1d4 tags:
```
python
# Cut the dataframe to no NaN
df_pmt
=
df_tests
.
dropna
(
subset
=
pmt_keys
)
df_pmt
=
df_pmt
[
pmt_keys
+
DOMid_keys
]
```
%% Cell type:code id:5d602ade-f9d6-4303-ab4c-94938eb0660a tags:
```
python
# Convert pmt results result branches to float
df_pmt
=
df_pmt
.
astype
(
dict
(
zip
(
pmt_keys
,
[
float
]
*
len
(
pmt_keys
))))
```
%% Cell type:code id:7c303c75-fa66-48f2-a09f-a5bf146538bc tags:
```
python
def
count_chan_above_threshold
(
gain_threshold
=
1.7
,
ncr_pmt_threshold
=
3
,
siteID
=
"
999
"
):
"""
Count number of channels above a gain threshold for each DOM
siteID =
"
999
"
means for all sites,
"
1
"
is Amsterdam
"""
doms
=
[]
bad_channels
=
[]
# number of bad channels
for
index
,
row
in
df_pmt
.
iterrows
():
bad
=
0
if
siteID
!=
"
999
"
and
row
[
"
SiteID
"
]
!=
siteID
:
continue
# only amsterdam
for
gain_key
in
gain_keys
:
if
row
[
gain_key
]
>
gain_threshold
:
bad
+=
1
if
bad
==
31
:
continue
# there is a group of (older?) DOMS with all gains around 29
doms
.
append
(
row
[
"
SERIAL
"
]
)
bad_channels
.
append
(
bad
)
bad_doms
=
[
i
for
i
,
v
in
enumerate
(
bad_channels
)
if
v
>
ncr_pmt_threshold
]
return
doms
,
bad_channels
,
len
(
bad_doms
)
```
%% Cell type:code id:4a9a5b4b-4d41-450d-bc2e-fdb10a870ed8 tags:
```
python
import
matplotlib.pyplot
as
plt
gain_threshold
=
1.7
ncr_pmt_threshold
=
3
location
=
{
"
Amsterdam
"
:
"
1
"
,
"
All
"
:
"
999
"
}
# amsterdam
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_threshold
,
ncr_pmt_threshold
,
location
[
"
Amsterdam
"
]
)
fig
,
axes
=
plt
.
subplots
(
1
,
2
,
figsize
=
[
20
,
5
]
)
axes
[
0
].
hist
(
bad_channels
,
[
-
0.5
,
0.5
,
1.5
,
2.5
,
3.5
,
4.5
,
5.5
,
6.5
,
7.5
,
8.5
,
9.5
,
10.5
])
axes
[
0
].
plot
([
bad_pmt_threshold
,
bad_pmt_threshold
],
[
0
,
30
],
color
=
'
red
'
)
axes
[
0
].
set_xlabel
(
"
Number of channels with gain >
"
+
str
(
gain_threshold
))
axes
[
0
].
set_ylabel
(
"
Number of DOMs
"
)
axes
[
0
].
set_title
(
"
Location: Amsterdam, NCR doms:
"
+
str
(
n_bad_doms
)
)
print
(
"
failed doms in Amsterdam
"
,
n_bad_doms
)
# all locations
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_threshold
,
ncr_pmt_threshold
,
location
[
"
All
"
]
)
axes
[
1
].
hist
(
bad_channels
,
[
-
0.5
,
0.5
,
1.5
,
2.5
,
3.5
,
4.5
,
5.5
,
6.5
,
7.5
,
8.5
,
9.5
,
10.5
])
axes
[
1
].
plot
([
bad_pmt_threshold
,
bad_pmt_threshold
],
[
0
,
60
],
color
=
'
red
'
)
axes
[
1
].
set_xlabel
(
"
Number of channels with gain >
"
+
str
(
gain_threshold
))
axes
[
1
].
set_ylabel
(
"
Number of DOMs
"
)
axes
[
1
].
set_title
(
"
Location: All, NCR doms:
"
+
str
(
n_bad_doms
)
)
print
(
"
failed doms in All
"
,
n_bad_doms
)
```
%% Output
failed doms in Amsterdam 20
failed doms in All 30
%% Cell type:code id:4eaed37c-3cae-44ef-88db-fac0ce64acbf tags:
```
python
import
numpy
as
np
def
ncr_doms_vs_gain_threshold
(
gain_min
,
gain_max
,
gain_step
,
ncr_pmt_threshold
=
3
,
siteID
=
"
999
"
):
"""
Plot number of bad doms (doms with ncr) versus max gain threshold
"""
gain_thresholds
=
np
.
arange
(
gain_min
,
gain_max
,
gain_step
)
number_bad_doms
=
[]
for
gain_tmp
in
gain_thresholds
:
doms
,
bad_channels
,
n_bad_doms
=
count_chan_above_threshold
(
gain_tmp
,
ncr_pmt_threshold
,
siteID
)
number_bad_doms
.
append
(
n_bad_doms
)
return
gain_thresholds
,
number_bad_doms
# amsterdam
gain_thresholds
,
number_bad_doms
=
ncr_doms_vs_gain_threshold
(
1.7
,
2.0
,
0.05
,
3
,
location
[
"
Amsterdam
"
]
)
fig
,
axes
=
plt
.
subplots
(
1
,
2
,
figsize
=
[
20
,
5
]
)
axes
[
0
].
plot
(
gain_thresholds
,
number_bad_doms
)
axes
[
0
].
set_xlabel
(
"
Max gain in acceptance test
"
)
axes
[
0
].
set_ylabel
(
"
Number of DOMs with NCR
"
)
axes
[
0
].
set_title
(
"
Location: Amsterdam
"
)
# all locations
gain_thresholds
,
number_bad_doms
=
ncr_doms_vs_gain_threshold
(
1.7
,
2.0
,
0.05
,
3
,
location
[
"
All
"
]
)
axes
[
1
].
plot
(
gain_thresholds
,
number_bad_doms
)
axes
[
1
].
set_xlabel
(
"
Max gain in acceptance test
"
)
axes
[
1
].
set_ylabel
(
"
Number of DOMs with NCR
"
)
axes
[
1
].
set_title
(
"
Location: Amsterdam
"
)
```
%% Output
Text(0.5, 1.0, 'Location: Amsterdam')
%% Cell type:code id:ca1f27e5-fecb-42d5-8e17-dd58da923f08 tags:
```
python
###
### Maarten asked in the group meeting (27-01-2022) what the distribution of all PMTs is
###
bins
=
np
.
arange
(
-
0.1
,
2.1
,
0.1
)
df_gains
=
df_pmt
[
gain_keys
].
stack
().
reset_index
()
df_gains
=
df_gains
[
df_gains
[
0
]
<
2.5
]
df_gains
.
hist
(
bins
=
bins
)
plt
.
plot
([
0.3
,
0.3
],
[
0
,
1500
],
color
=
'
red
'
)
plt
.
plot
([
1.7
,
1.7
],
[
0
,
1500
],
color
=
'
red
'
)
plt
.
xlabel
(
"
Fitted gain in acceptance test
"
)
plt
.
ylabel
(
"
Counts
"
)
plt
.
title
(
"
Mean: {}, std_dev: {}
"
.
format
(
round
(
df_gains
[
0
].
mean
(),
3
),
round
(
df_gains
[
0
].
std
(),
3
)
)
)
```
%% Output
Text(0.5, 1.0, 'Mean: 1.299, std_dev: 0.247')
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment