Skip to content
Snippets Groups Projects

Resolve "mc_info_extractor for neutrino reco chain"

Merged Daniel Guderian requested to merge 15-mc_info_extractor-for-neutrino-reco-chain into master
Files
5
+ 476
20
"""
Functions that extract info from a blob for the mc_info / y datafield
in the h5 files. Very much WIP.
in the h5 files.
These are made for the specific given runs. They might not be
applicable to other data, and could cause errors or produce unexpected
@@ -10,35 +10,491 @@ results when used on data other then the specified.
import warnings
import numpy as np
from km3pipe.io.hdf5 import HDF5Header
from h5py import File
__author__ = 'Stefan Reck'
__author__ = "Daniel Guderian"
def get_real_data(blob):
def get_std_reco(blob):
"""
Get info present in real data.
Designed for the 2017 one line runs.
Function to extract std reco info. The implemented strategy is the following:
First, look for whether a rec stag has been reached and only then extract the reconstructed
paramater from it. If not, set it to a dummy value (for now 0). This means that for an analysis the events with
exactly zero have to be filtered out!
The 'best track' is the first (highest lik) while a certain rec stage has to be reached. This might
have to be adjusted for other recos than JMuonGandalf chain.
Members of the Tracks:
dtype([('E', '<f8'), ('JCOPY_Z_M', '<f4'), ('JENERGY_CHI2', '<f4'), ('JENERGY_ENERGY', '<f4'),
('JENERGY_MUON_RANGE_METRES', '<f4'), ('JENERGY_NDF', '<f4'), ('JENERGY_NOISE_LIKELIHOOD', '<f4'),
('JENERGY_NUMBER_OF_HITS', '<f4'), ('JGANDALF_BETA0_RAD', '<f4'), ('JGANDALF_BETA1_RAD', '<f4'),
('JGANDALF_CHI2', '<f4'), ('JGANDALF_LAMBDA', '<f4'), ('JGANDALF_NUMBER_OF_HITS', '<f4'),
('JGANDALF_NUMBER_OF_ITERATIONS', '<f4'), ('JSHOWERFIT_ENERGY', '<f4'), ('JSTART_LENGTH_METRES', '<f4'),
('JSTART_NPE_MIP', '<f4'), ('JSTART_NPE_MIP_TOTAL', '<f4'), ('JVETO_NPE', '<f4'), ('JVETO_NUMBER_OF_HITS', '<f4'),
('dir_x', '<f8'), ('dir_y', '<f8'), ('dir_z', '<f8'), ('id', '<i4'), ('idx', '<i8'), ('length', '<f8'),
('likelihood', '<f8'), ('pos_x', '<f8'), ('pos_y', '<f8'), ('pos_z', '<f8'), ('rec_type', '<i4'),
('t', '<f8'), ('group_id', '<i8')])
members of rec stages:
.idx (corresponding to the track id),
.rec_stage (rec stage identifier, for JMuonGandalf for example: 1=prefit, 2=simplex, 3=gandalf,
4=engery, 5=start),
.group_id (event id in file)
Parameters
----------
blob : blob containing the reco info
Returns
-------
std_reco_info : dict
Dict with the most common std reco params. Can be expanded.
"""
event_info = blob['EventInfo'][0]
track = {
'event_id': event_info.event_id,
'run_id': event_info.run_id,
'trigger_mask': event_info.trigger_mask,
# use this later to identify not reconstructed events
dummy_value = 0
# if there was no std reco at all, this will not exist
# these are events that stopped at/before prefit
try:
rec_stages = blob["RecStages"]
# get first track only
rec_stages_best_track = rec_stages.rec_stage[rec_stages.idx == 0]
# often enough: best track is the first
best_track = blob["Tracks"][0]
except KeyError:
rec_stages_best_track = []
print(
"An event didnt have any reco. Setting everything to"
+ str(dummy_value)
+ "."
)
# take the direction only if JGanalf was executed
if 3 in rec_stages_best_track:
std_dir_x = best_track["dir_x"]
std_dir_y = best_track["dir_y"]
std_dir_z = best_track["dir_z"]
std_beta0 = best_track["JGANDALF_BETA0_RAD"]
std_lik = best_track["likelihood"]
std_n_hits_gandalf = best_track["JGANDALF_NUMBER_OF_HITS"]
else:
std_dir_x = dummy_value
std_dir_y = dummy_value
std_dir_z = dummy_value
std_beta0 = dummy_value
std_lik = dummy_value
std_n_hits_gandalf = dummy_value
# energy fit from JEnergy
if 4 in rec_stages_best_track:
std_energy = best_track["E"]
lik_energy = best_track["JENERGY_CHI2"]
else:
std_energy = dummy_value
lik_energy = dummy_value
# vertex and length from JStart
if 5 in rec_stages_best_track:
std_pos_x = best_track["pos_x"]
std_pos_y = best_track["pos_y"]
std_pos_z = best_track["pos_z"]
std_length = best_track["JSTART_LENGTH_METRES"]
else:
std_pos_x = dummy_value
std_pos_y = dummy_value
std_pos_z = dummy_value
std_length = dummy_value
std_reco_info = {
"std_dir_x": std_dir_x,
"std_dir_y": std_dir_y,
"std_dir_z": std_dir_z,
"std_beta0": std_beta0,
"std_lik": std_lik,
"std_n_hits_gandalf": std_n_hits_gandalf,
"std_pos_x": std_pos_x,
"std_pos_y": std_pos_y,
"std_pos_z": std_pos_z,
"std_energy": std_energy,
"std_lik_energy": lik_energy,
"std_length": std_length,
}
return track
return std_reco_info
def get_pure_noise(blob):
def get_real_data_info_extr(input_file):
"""
For simulated pure noise events, which have particle_type 0.
Wrapper function that includes the actual mc_info_extr
for real data. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
event_info = blob['EventInfo']
track = {
'event_id': event_info.event_id[0],
'run_id': event_info.run_id,
'particle_type': 0
}
return track
# check if std reco is present
f = File(input_file, "r")
has_std_reco = "reco" in f.keys()
def mc_info_extr(blob):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this real data case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info = blob["EventInfo"][0]
# add n_hits info for the cut
n_hits = len(blob["Hits"])
track = {
"event_id": event_info.event_id,
"run_id": event_info.run_id,
"trigger_mask": event_info.trigger_mask,
"n_hits": n_hits,
}
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
def get_random_noise_mc_info_extr(input_file):
"""
Wrapper function that includes the actual mc_info_extr
for random noise simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f = File(input_file, "r")
has_std_reco = "reco" in f.keys()
def mc_info_extr(blob):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this random noise case it is only general event info, like the id.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_info = blob["EventInfo"]
track = {
"event_id": event_info.event_id[0],
"run_id": event_info.run_id[0],
"particle_type": 0,
}
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
def get_neutrino_mc_info_extr(input_file):
"""
Wrapper function that includes the actual mc_info_extr
for neutrino simulations. The n_gen parameter, needed for neutrino weighting
is extracted from the header of the file.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f = File(input_file, "r")
has_std_reco = "reco" in f.keys()
# get the n_gen
header = HDF5Header.from_hdf5(input_file)
n_gen = header.genvol.numberOfEvents
def mc_info_extr(blob):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this neutrino case it is the full mc info for the primary neutrino; there are the several "McTracks":
check the simulation which index "p" the neutrino has.
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
# get general info about the event
event_id = blob["EventInfo"].event_id[0]
run_id = blob["EventInfo"].run_id[0]
# weights for neutrino analysis
weight_w1 = blob["EventInfo"].weight_w1[0]
weight_w2 = blob["EventInfo"].weight_w2[0]
weight_w3 = blob["EventInfo"].weight_w3[0]
# first, look for the particular neutrino index of the production
p = 0 # for ORCA4 (and probably subsequent productions)
mc_track = blob["McTracks"][p]
# some track mc truth info
particle_type = mc_track.type
energy = mc_track.energy
is_cc = mc_track.cc
bjorkeny = mc_track.by
dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z
time_interaction = (
mc_track.time
) # actually always 0 for primary neutrino, measured in MC time
vertex_pos_x, vertex_pos_y, vertex_pos_z = (
mc_track.pos_x,
mc_track.pos_y,
mc_track.pos_z,
)
# add also the nhits info
n_hits = len(blob["Hits"])
track = {
"event_id": event_id,
"particle_type": particle_type,
"energy": energy,
"is_cc": is_cc,
"bjorkeny": bjorkeny,
"dir_x": dir_x,
"dir_y": dir_y,
"dir_z": dir_z,
"time_interaction": time_interaction,
"run_id": run_id,
"vertex_pos_x": vertex_pos_x,
"vertex_pos_y": vertex_pos_y,
"vertex_pos_z": vertex_pos_z,
"n_hits": n_hits,
"weight_w1": weight_w1,
"weight_w2": weight_w2,
"weight_w3": weight_w3,
"n_gen": n_gen,
}
print(is_cc)
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
def get_muon_mc_info_extr(input_file):
"""
Wrapper function that includes the actual mc_info_extr
for atm. muon simulations. There are no n_gen like in the neutrino case.
Parameters
----------
input_file : km3net data file
Can be online or offline format.
Returns
-------
mc_info_extr : function
The actual mc_info_extr function that holds the extractions.
"""
# check if std reco is present
f = File(input_file, "r")
has_std_reco = "reco" in f.keys()
# no n_gen here, but needed for concatenation
n_gen = 1
def mc_info_extr(blob):
"""
Processes a blob and creates the y with mc_info and, if existing, std reco.
For this atm. muon case it is the full mc info for the primary; there are the several "McTracks":
check the simulation to understand what "p" you want. Muons come in bundles that have the same direction.
For energy: sum of all muons in a bundle,
for vertex: weighted (energy) mean of the individual vertices .
Parameters
----------
blob : dict
The blob from the pipeline.
Returns
-------
track : dict
Containing all the specified info the y should have.
"""
event_id = blob["EventInfo"].event_id[0]
run_id = blob["EventInfo"].run_id[0]
p = 0 # for ORCA4 (and probably subsequent productions)
mc_track = blob["McTracks"][p]
particle_type = (
mc_track.type
) # assumed that this is the same for all muons in a bundle
is_cc = mc_track.cc # always 0 actually
bjorkeny = mc_track.by
time_interaction = mc_track.time # same for all muons in a bundle
# sum up the energy of all muons
energy = np.sum(blob["McTracks"].energy)
# all muons in a bundle are parallel, so just take dir of first muon
dir_x, dir_y, dir_z = mc_track.dir_x, mc_track.dir_y, mc_track.dir_z
# vertex is the weighted (energy) mean of the individual vertices
vertex_pos_x = np.average(
blob["McTracks"][p:].pos_x, weights=blob["McTracks"][p:].energy
)
vertex_pos_y = np.average(
blob["McTracks"][p:].pos_y, weights=blob["McTracks"][p:].energy
)
vertex_pos_z = np.average(
blob["McTracks"][p:].pos_z, weights=blob["McTracks"][p:].energy
)
# add also the nhits info
n_hits = len(blob["Hits"])
# this is only relevant for neutrinos, though dummy info is needed for the concatenation
weight_w1 = 10
weight_w2 = 10
weight_w3 = 10
track = {
"event_id": event_id,
"particle_type": particle_type,
"energy": energy,
"is_cc": is_cc,
"bjorkeny": bjorkeny,
"dir_x": dir_x,
"dir_y": dir_y,
"dir_z": dir_z,
"time_interaction": time_interaction,
"run_id": run_id,
"vertex_pos_x": vertex_pos_x,
"vertex_pos_y": vertex_pos_y,
"vertex_pos_z": vertex_pos_z,
"n_hits": n_hits,
"weight_w1": weight_w1,
"weight_w2": weight_w2,
"weight_w3": weight_w3,
"n_gen": n_gen,
}
# get all the std reco info
if has_std_reco:
std_reco_info = get_std_reco(blob)
track.update(std_reco_info)
return track
return mc_info_extr
Loading